Probabilistic Expert System based on Bayesian Networks for the prediction of cervical cancer

Descripción del Articulo

Cervical cancer is currently the fourth most frequent type of cancer in women. A large number of techniques from the Artificial Intelligence (AI) such as Neuronal Networks, Support Vector Machines (SVM), Decision Trees and others; have been used to deal with the problem of predicting this disease. T...

Descripción completa

Detalles Bibliográficos
Autores: Paulino Flores, Luis A., Huayna Dueñas, Ana M.
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/16360
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/16360
Nivel de acceso:acceso abierto
Materia:Predictive models; Bayes methods; Prediction algorithms; Probabilistic Computing
Modelos Predictivos; Método de Bayes; Algoritmos de Predicción; Computación Probabilística
Descripción
Sumario:Cervical cancer is currently the fourth most frequent type of cancer in women. A large number of techniques from the Artificial Intelligence (AI) such as Neuronal Networks, Support Vector Machines (SVM), Decision Trees and others; have been used to deal with the problem of predicting this disease. The following paper shows the cervical cancer risk prediction, by implementing a probabilistic model based on Bayesian Networks and using 322 instances where we could retrieve 15 different features that are known information from each patient. The tests were made using the 40% of the whole dataset, confusion matrix and AUC indicator. The results show that this work has raised a 96% of success rate as well as 0.9864 in terms of the AUC indicator, in addition to this, the results suggest that Bayesian Networks are able to reach a high performance and provide transparency during the inference process at the same time, something that does not happen in many other techniques, and that they are really efficient to face this sort of prediction problems.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).