Rotational flows over obstacles in the forced Korteweg-de Vries framework

Descripción del Articulo

In this work we investigate rotational waves resonantly excited by a submerged obstacle in a sheared shallow water channel with constant vorticity. In the weakly nonlinear, weakly dispersive regime, the problem is formulated in the forced Korteweg-de Vries framework. We compute the solution...

Descripción completa

Detalles Bibliográficos
Autor: V. Flamarion, Marcelo
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/3710
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3710
Nivel de acceso:acceso abierto
Materia:Ondas de gravedad
Ondas solitarias
Ecuación de KdV
Flujo cizallado
Gravity waves
Solitary waves
KdV equation
Shear flow
Descripción
Sumario:In this work we investigate rotational waves resonantly excited by a submerged obstacle in a sheared shallow water channel with constant vorticity. In the weakly nonlinear, weakly dispersive regime, the problem is formulated in the forced Korteweg-de Vries framework. We compute the solution of the initial value problem for this equation numerically using a Fourier pseudospectral method with integrating factor. The water surface is initially taken at rest, and once the current is turned on, waves are immediately generated in the free surface. We identify the main effects of sheared current in the generated waves such as rotational solitary waves propagating upstream and sharp crested waves being generated.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).