Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context

Descripción del Articulo

Soil moisture content can be used to predict drought impact on agricultural yield better than precipitation. Remote sensing is viable source of soil moisture data in instrument-scarce areas. However, space-based soil moisture estimates lack suitability for daily and high-resolution agricultural, hyd...

Descripción completa

Detalles Bibliográficos
Autores: Bueno, Marcelo, Baca García, Carlos, Montoya, Nilton, Rau, Pedro, Loayza, Hildo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5434
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434
Nivel de acceso:acceso abierto
Materia:soil moisture
remote sensing
machine learning
random forest
downscaling
id REVUNITRU_f29a563cf0d4a70acc3e5ea73b01530f
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5434
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce contextBueno, MarceloBaca García, Carlos Montoya, Nilton Rau, Pedro Loayza, Hildo soil moistureremote sensingmachine learningrandom forestdownscalingSoil moisture content can be used to predict drought impact on agricultural yield better than precipitation. Remote sensing is viable source of soil moisture data in instrument-scarce areas. However, space-based soil moisture estimates lack suitability for daily and high-resolution agricultural, hydrological, and environmental applications. This study aimed to assess the potential of the random forest machine learning technique to enhance the spatial resolution of remote soil moisture products from the SMAP satellite. Models were built using random forest for spatial downscaling of SMAP-L3-E, then visually and statistically evaluated for disaggregation quality. The impact of topography, soil properties, and precipitation on the downscaled soil moisture was examined. The relationship between downscaled soil moisture and in-situ soil moisture was analyzed. The results indicate that the proposed method demonstrated spatial and hydrological coherence, along with a satisfactory downscaling quality. Statistical validation indicated suitable generalization error for scientific and practical use (RMSE < 0.05 cm3 cm-3). Random forest effectively achieved spatial downscaling of SMAP-L3-E in the study area. Principal component and spatial analysis revealed dependence of downscaled soil moisture on elevation, soil organic carbon content, clay content, and saturated hydraulic conductivity, mainly under near-saturation conditions. Regarding validation against in-situ data, downscaled soil moisture explained in-situ soil moisture well under low soil water content (  = 0.624). Downscaling performance deteriorates for water contents between 0.40 to 0.50 cm3 cm-3, suggesting inadequacy under near saturation conditions at a daily temporal frequency. However, coarser temporal aggregations (7 to 10 days) yielded an average 0.98 correlation coefficient, regardless of saturation conditions. These results could potentially be applied in irrigation planning, soil physics studies and hydrology monitoring, to forecasting the occurrence of droughts, leaching of contaminants, surface runoff modeling, carbon cycle studies, soil's capacity to store and provide nutrients. Universidad Nacional de Trujillo2024-03-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434Scientia Agropecuaria; Vol. 15 Núm. 1 (2024): Enero-Marzo; 103-120Scientia Agropecuaria; Vol. 15 No. 1 (2024): Enero-Marzo; 103-1202306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspaenghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/5888https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/6593https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/5884Derechos de autor 2024 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/54342024-02-05T18:18:58Z
dc.title.none.fl_str_mv Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context
title Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context
spellingShingle Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context
Bueno, Marcelo
soil moisture
remote sensing
machine learning
random forest
downscaling
title_short Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context
title_full Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context
title_fullStr Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context
title_full_unstemmed Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context
title_sort Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context
dc.creator.none.fl_str_mv Bueno, Marcelo
Baca García, Carlos
Montoya, Nilton
Rau, Pedro
Loayza, Hildo
author Bueno, Marcelo
author_facet Bueno, Marcelo
Baca García, Carlos
Montoya, Nilton
Rau, Pedro
Loayza, Hildo
author_role author
author2 Baca García, Carlos
Montoya, Nilton
Rau, Pedro
Loayza, Hildo
author2_role author
author
author
author
dc.subject.none.fl_str_mv soil moisture
remote sensing
machine learning
random forest
downscaling
topic soil moisture
remote sensing
machine learning
random forest
downscaling
description Soil moisture content can be used to predict drought impact on agricultural yield better than precipitation. Remote sensing is viable source of soil moisture data in instrument-scarce areas. However, space-based soil moisture estimates lack suitability for daily and high-resolution agricultural, hydrological, and environmental applications. This study aimed to assess the potential of the random forest machine learning technique to enhance the spatial resolution of remote soil moisture products from the SMAP satellite. Models were built using random forest for spatial downscaling of SMAP-L3-E, then visually and statistically evaluated for disaggregation quality. The impact of topography, soil properties, and precipitation on the downscaled soil moisture was examined. The relationship between downscaled soil moisture and in-situ soil moisture was analyzed. The results indicate that the proposed method demonstrated spatial and hydrological coherence, along with a satisfactory downscaling quality. Statistical validation indicated suitable generalization error for scientific and practical use (RMSE < 0.05 cm3 cm-3). Random forest effectively achieved spatial downscaling of SMAP-L3-E in the study area. Principal component and spatial analysis revealed dependence of downscaled soil moisture on elevation, soil organic carbon content, clay content, and saturated hydraulic conductivity, mainly under near-saturation conditions. Regarding validation against in-situ data, downscaled soil moisture explained in-situ soil moisture well under low soil water content (  = 0.624). Downscaling performance deteriorates for water contents between 0.40 to 0.50 cm3 cm-3, suggesting inadequacy under near saturation conditions at a daily temporal frequency. However, coarser temporal aggregations (7 to 10 days) yielded an average 0.98 correlation coefficient, regardless of saturation conditions. These results could potentially be applied in irrigation planning, soil physics studies and hydrology monitoring, to forecasting the occurrence of droughts, leaching of contaminants, surface runoff modeling, carbon cycle studies, soil's capacity to store and provide nutrients. 
publishDate 2024
dc.date.none.fl_str_mv 2024-03-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434
dc.language.none.fl_str_mv spa
eng
language spa
eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/5888
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/6593
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/5884
dc.rights.none.fl_str_mv Derechos de autor 2024 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2024 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 15 Núm. 1 (2024): Enero-Marzo; 103-120
Scientia Agropecuaria; Vol. 15 No. 1 (2024): Enero-Marzo; 103-120
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846521098118627328
score 13.040751
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).