Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context
Descripción del Articulo
Soil moisture content can be used to predict drought impact on agricultural yield better than precipitation. Remote sensing is viable source of soil moisture data in instrument-scarce areas. However, space-based soil moisture estimates lack suitability for daily and high-resolution agricultural, hyd...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | español inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/5434 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434 |
| Nivel de acceso: | acceso abierto |
| Materia: | soil moisture remote sensing machine learning random forest downscaling |
| id |
REVUNITRU_f29a563cf0d4a70acc3e5ea73b01530f |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/5434 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce contextBueno, MarceloBaca García, Carlos Montoya, Nilton Rau, Pedro Loayza, Hildo soil moistureremote sensingmachine learningrandom forestdownscalingSoil moisture content can be used to predict drought impact on agricultural yield better than precipitation. Remote sensing is viable source of soil moisture data in instrument-scarce areas. However, space-based soil moisture estimates lack suitability for daily and high-resolution agricultural, hydrological, and environmental applications. This study aimed to assess the potential of the random forest machine learning technique to enhance the spatial resolution of remote soil moisture products from the SMAP satellite. Models were built using random forest for spatial downscaling of SMAP-L3-E, then visually and statistically evaluated for disaggregation quality. The impact of topography, soil properties, and precipitation on the downscaled soil moisture was examined. The relationship between downscaled soil moisture and in-situ soil moisture was analyzed. The results indicate that the proposed method demonstrated spatial and hydrological coherence, along with a satisfactory downscaling quality. Statistical validation indicated suitable generalization error for scientific and practical use (RMSE < 0.05 cm3 cm-3). Random forest effectively achieved spatial downscaling of SMAP-L3-E in the study area. Principal component and spatial analysis revealed dependence of downscaled soil moisture on elevation, soil organic carbon content, clay content, and saturated hydraulic conductivity, mainly under near-saturation conditions. Regarding validation against in-situ data, downscaled soil moisture explained in-situ soil moisture well under low soil water content ( = 0.624). Downscaling performance deteriorates for water contents between 0.40 to 0.50 cm3 cm-3, suggesting inadequacy under near saturation conditions at a daily temporal frequency. However, coarser temporal aggregations (7 to 10 days) yielded an average 0.98 correlation coefficient, regardless of saturation conditions. These results could potentially be applied in irrigation planning, soil physics studies and hydrology monitoring, to forecasting the occurrence of droughts, leaching of contaminants, surface runoff modeling, carbon cycle studies, soil's capacity to store and provide nutrients. Universidad Nacional de Trujillo2024-03-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434Scientia Agropecuaria; Vol. 15 Núm. 1 (2024): Enero-Marzo; 103-120Scientia Agropecuaria; Vol. 15 No. 1 (2024): Enero-Marzo; 103-1202306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspaenghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/5888https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/6593https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/5884Derechos de autor 2024 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/54342024-02-05T18:18:58Z |
| dc.title.none.fl_str_mv |
Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context |
| title |
Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context |
| spellingShingle |
Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context Bueno, Marcelo soil moisture remote sensing machine learning random forest downscaling |
| title_short |
Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context |
| title_full |
Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context |
| title_fullStr |
Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context |
| title_full_unstemmed |
Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context |
| title_sort |
Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context |
| dc.creator.none.fl_str_mv |
Bueno, Marcelo Baca García, Carlos Montoya, Nilton Rau, Pedro Loayza, Hildo |
| author |
Bueno, Marcelo |
| author_facet |
Bueno, Marcelo Baca García, Carlos Montoya, Nilton Rau, Pedro Loayza, Hildo |
| author_role |
author |
| author2 |
Baca García, Carlos Montoya, Nilton Rau, Pedro Loayza, Hildo |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
soil moisture remote sensing machine learning random forest downscaling |
| topic |
soil moisture remote sensing machine learning random forest downscaling |
| description |
Soil moisture content can be used to predict drought impact on agricultural yield better than precipitation. Remote sensing is viable source of soil moisture data in instrument-scarce areas. However, space-based soil moisture estimates lack suitability for daily and high-resolution agricultural, hydrological, and environmental applications. This study aimed to assess the potential of the random forest machine learning technique to enhance the spatial resolution of remote soil moisture products from the SMAP satellite. Models were built using random forest for spatial downscaling of SMAP-L3-E, then visually and statistically evaluated for disaggregation quality. The impact of topography, soil properties, and precipitation on the downscaled soil moisture was examined. The relationship between downscaled soil moisture and in-situ soil moisture was analyzed. The results indicate that the proposed method demonstrated spatial and hydrological coherence, along with a satisfactory downscaling quality. Statistical validation indicated suitable generalization error for scientific and practical use (RMSE < 0.05 cm3 cm-3). Random forest effectively achieved spatial downscaling of SMAP-L3-E in the study area. Principal component and spatial analysis revealed dependence of downscaled soil moisture on elevation, soil organic carbon content, clay content, and saturated hydraulic conductivity, mainly under near-saturation conditions. Regarding validation against in-situ data, downscaled soil moisture explained in-situ soil moisture well under low soil water content ( = 0.624). Downscaling performance deteriorates for water contents between 0.40 to 0.50 cm3 cm-3, suggesting inadequacy under near saturation conditions at a daily temporal frequency. However, coarser temporal aggregations (7 to 10 days) yielded an average 0.98 correlation coefficient, regardless of saturation conditions. These results could potentially be applied in irrigation planning, soil physics studies and hydrology monitoring, to forecasting the occurrence of droughts, leaching of contaminants, surface runoff modeling, carbon cycle studies, soil's capacity to store and provide nutrients. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-03-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434 |
| url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434 |
| dc.language.none.fl_str_mv |
spa eng |
| language |
spa eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/5888 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/6593 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434/5884 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2024 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2024 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 15 Núm. 1 (2024): Enero-Marzo; 103-120 Scientia Agropecuaria; Vol. 15 No. 1 (2024): Enero-Marzo; 103-120 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846521098118627328 |
| score |
13.040751 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).