Watershed scale soil moisture estimation model using machine learning and remote sensing in a data-scarce context

Descripción del Articulo

Soil moisture content can be used to predict drought impact on agricultural yield better than precipitation. Remote sensing is viable source of soil moisture data in instrument-scarce areas. However, space-based soil moisture estimates lack suitability for daily and high-resolution agricultural, hyd...

Descripción completa

Detalles Bibliográficos
Autores: Bueno, Marcelo, Baca García, Carlos, Montoya, Nilton, Rau, Pedro, Loayza, Hildo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5434
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5434
Nivel de acceso:acceso abierto
Materia:soil moisture
remote sensing
machine learning
random forest
downscaling
Descripción
Sumario:Soil moisture content can be used to predict drought impact on agricultural yield better than precipitation. Remote sensing is viable source of soil moisture data in instrument-scarce areas. However, space-based soil moisture estimates lack suitability for daily and high-resolution agricultural, hydrological, and environmental applications. This study aimed to assess the potential of the random forest machine learning technique to enhance the spatial resolution of remote soil moisture products from the SMAP satellite. Models were built using random forest for spatial downscaling of SMAP-L3-E, then visually and statistically evaluated for disaggregation quality. The impact of topography, soil properties, and precipitation on the downscaled soil moisture was examined. The relationship between downscaled soil moisture and in-situ soil moisture was analyzed. The results indicate that the proposed method demonstrated spatial and hydrological coherence, along with a satisfactory downscaling quality. Statistical validation indicated suitable generalization error for scientific and practical use (RMSE < 0.05 cm3 cm-3). Random forest effectively achieved spatial downscaling of SMAP-L3-E in the study area. Principal component and spatial analysis revealed dependence of downscaled soil moisture on elevation, soil organic carbon content, clay content, and saturated hydraulic conductivity, mainly under near-saturation conditions. Regarding validation against in-situ data, downscaled soil moisture explained in-situ soil moisture well under low soil water content (  = 0.624). Downscaling performance deteriorates for water contents between 0.40 to 0.50 cm3 cm-3, suggesting inadequacy under near saturation conditions at a daily temporal frequency. However, coarser temporal aggregations (7 to 10 days) yielded an average 0.98 correlation coefficient, regardless of saturation conditions. These results could potentially be applied in irrigation planning, soil physics studies and hydrology monitoring, to forecasting the occurrence of droughts, leaching of contaminants, surface runoff modeling, carbon cycle studies, soil's capacity to store and provide nutrients. 
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).