Uniquely list colorability of the graph Kn2 + Om

Descripción del Articulo

Given a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper vertex coloring of G where each vertex v takes its color from L(v). The graph is uniquely k-list colorable if there is a list assignment L such that jL(v)j = k for every vertex v and the graph has exactl...

Descripción completa

Detalles Bibliográficos
Autor: Xuan Hung, Le
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/2953
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953
Nivel de acceso:acceso abierto
Materia:Vertex coloring (coloring)
list coloring
uniquely list colorable graph
complete r-partite graph
id REVUNITRU_c939655734d0e74d122e0d1c9439f414
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/2953
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Uniquely list colorability of the graph Kn2 + OmXuan Hung, LeVertex coloring (coloring)list coloringuniquely list colorable graphcomplete r-partite graphGiven a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper vertex coloring of G where each vertex v takes its color from L(v). The graph is uniquely k-list colorable if there is a list assignment L such that jL(v)j = k for every vertex v and the graph has exactly one L-coloring with these lists. In this paper, we characterize uniquely list colorability of the graph G = Kn2 + Om. We shall prove that if n = 2 then G is uniquely 3-list colorable if and only if m >= 9, if n = 3 and m >=1 then G is uniquely 3-list colorable, if n >=4 then G is uniquely k-list colorable with k =[m/2]+1, and if m>=n-1, entonce G es UnLC.National University of Trujillo - Academic Department of Mathematics2020-07-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953Selecciones Matemáticas; Vol. 7 No. 01 (2020): January - July; 25-28Selecciones Matemáticas; Vol. 7 Núm. 01 (2020): Enero-Julio; 25-28Selecciones Matemáticas; v. 7 n. 01 (2020): Enero-Julio; 25-282411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspaenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953/3283https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953/3798Derechos de autor 2020 Selecciones Matemáticasinfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/29532022-10-21T18:51:17Z
dc.title.none.fl_str_mv Uniquely list colorability of the graph Kn2 + Om
title Uniquely list colorability of the graph Kn2 + Om
spellingShingle Uniquely list colorability of the graph Kn2 + Om
Xuan Hung, Le
Vertex coloring (coloring)
list coloring
uniquely list colorable graph
complete r-partite graph
title_short Uniquely list colorability of the graph Kn2 + Om
title_full Uniquely list colorability of the graph Kn2 + Om
title_fullStr Uniquely list colorability of the graph Kn2 + Om
title_full_unstemmed Uniquely list colorability of the graph Kn2 + Om
title_sort Uniquely list colorability of the graph Kn2 + Om
dc.creator.none.fl_str_mv Xuan Hung, Le
author Xuan Hung, Le
author_facet Xuan Hung, Le
author_role author
dc.subject.none.fl_str_mv Vertex coloring (coloring)
list coloring
uniquely list colorable graph
complete r-partite graph
topic Vertex coloring (coloring)
list coloring
uniquely list colorable graph
complete r-partite graph
description Given a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper vertex coloring of G where each vertex v takes its color from L(v). The graph is uniquely k-list colorable if there is a list assignment L such that jL(v)j = k for every vertex v and the graph has exactly one L-coloring with these lists. In this paper, we characterize uniquely list colorability of the graph G = Kn2 + Om. We shall prove that if n = 2 then G is uniquely 3-list colorable if and only if m >= 9, if n = 3 and m >=1 then G is uniquely 3-list colorable, if n >=4 then G is uniquely k-list colorable with k =[m/2]+1, and if m>=n-1, entonce G es UnLC.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953
dc.language.none.fl_str_mv spa
eng
language spa
eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953/3283
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953/3798
dc.rights.none.fl_str_mv Derechos de autor 2020 Selecciones Matemáticas
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2020 Selecciones Matemáticas
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 7 No. 01 (2020): January - July; 25-28
Selecciones Matemáticas; Vol. 7 Núm. 01 (2020): Enero-Julio; 25-28
Selecciones Matemáticas; v. 7 n. 01 (2020): Enero-Julio; 25-28
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841449169129046016
score 13.093635
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).