Uniquely list colorability of the graph Kn2 + Om
Descripción del Articulo
Given a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper vertex coloring of G where each vertex v takes its color from L(v). The graph is uniquely k-list colorable if there is a list assignment L such that jL(v)j = k for every vertex v and the graph has exactl...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español inglés |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/2953 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953 |
Nivel de acceso: | acceso abierto |
Materia: | Vertex coloring (coloring) list coloring uniquely list colorable graph complete r-partite graph |
id |
REVUNITRU_c939655734d0e74d122e0d1c9439f414 |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/2953 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
Uniquely list colorability of the graph Kn2 + OmXuan Hung, LeVertex coloring (coloring)list coloringuniquely list colorable graphcomplete r-partite graphGiven a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper vertex coloring of G where each vertex v takes its color from L(v). The graph is uniquely k-list colorable if there is a list assignment L such that jL(v)j = k for every vertex v and the graph has exactly one L-coloring with these lists. In this paper, we characterize uniquely list colorability of the graph G = Kn2 + Om. We shall prove that if n = 2 then G is uniquely 3-list colorable if and only if m >= 9, if n = 3 and m >=1 then G is uniquely 3-list colorable, if n >=4 then G is uniquely k-list colorable with k =[m/2]+1, and if m>=n-1, entonce G es UnLC.National University of Trujillo - Academic Department of Mathematics2020-07-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953Selecciones Matemáticas; Vol. 7 No. 01 (2020): January - July; 25-28Selecciones Matemáticas; Vol. 7 Núm. 01 (2020): Enero-Julio; 25-28Selecciones Matemáticas; v. 7 n. 01 (2020): Enero-Julio; 25-282411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspaenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953/3283https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953/3798Derechos de autor 2020 Selecciones Matemáticasinfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/29532022-10-21T18:51:17Z |
dc.title.none.fl_str_mv |
Uniquely list colorability of the graph Kn2 + Om |
title |
Uniquely list colorability of the graph Kn2 + Om |
spellingShingle |
Uniquely list colorability of the graph Kn2 + Om Xuan Hung, Le Vertex coloring (coloring) list coloring uniquely list colorable graph complete r-partite graph |
title_short |
Uniquely list colorability of the graph Kn2 + Om |
title_full |
Uniquely list colorability of the graph Kn2 + Om |
title_fullStr |
Uniquely list colorability of the graph Kn2 + Om |
title_full_unstemmed |
Uniquely list colorability of the graph Kn2 + Om |
title_sort |
Uniquely list colorability of the graph Kn2 + Om |
dc.creator.none.fl_str_mv |
Xuan Hung, Le |
author |
Xuan Hung, Le |
author_facet |
Xuan Hung, Le |
author_role |
author |
dc.subject.none.fl_str_mv |
Vertex coloring (coloring) list coloring uniquely list colorable graph complete r-partite graph |
topic |
Vertex coloring (coloring) list coloring uniquely list colorable graph complete r-partite graph |
description |
Given a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper vertex coloring of G where each vertex v takes its color from L(v). The graph is uniquely k-list colorable if there is a list assignment L such that jL(v)j = k for every vertex v and the graph has exactly one L-coloring with these lists. In this paper, we characterize uniquely list colorability of the graph G = Kn2 + Om. We shall prove that if n = 2 then G is uniquely 3-list colorable if and only if m >= 9, if n = 3 and m >=1 then G is uniquely 3-list colorable, if n >=4 then G is uniquely k-list colorable with k =[m/2]+1, and if m>=n-1, entonce G es UnLC. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-25 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953 |
url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953 |
dc.language.none.fl_str_mv |
spa eng |
language |
spa eng |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953/3283 https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2953/3798 |
dc.rights.none.fl_str_mv |
Derechos de autor 2020 Selecciones Matemáticas info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2020 Selecciones Matemáticas |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 7 No. 01 (2020): January - July; 25-28 Selecciones Matemáticas; Vol. 7 Núm. 01 (2020): Enero-Julio; 25-28 Selecciones Matemáticas; v. 7 n. 01 (2020): Enero-Julio; 25-28 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1841449169129046016 |
score |
13.093635 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).