Detection and identification of high Andean plant communities, Wetlands and Tolar de Puna Seca by means of RGB and NDVI orthophotos in “Unmanned Aerial Systems” drones

Descripción del Articulo

Remote sensing and geographic information systems are tools that in the last decade have been widely used in the management of natural resources, however, they have presented deficiencies for precision livestock studies due to the quality of spatial resolutions, spectral and temporal. Faced with thi...

Descripción completa

Detalles Bibliográficos
Autores: Estrada Zúñiga, Andrés C., Ñaupari Vásquez, Javier
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/3677
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3677
Nivel de acceso:acceso abierto
Materia:Comunidad vegetal
Sensores remotos
Tolar
Bofedal
UAS
UAV
Plant community
Remote sensors
id REVUNITRU_c76c18c22de338fc358d9794cba59f13
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/3677
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
dc.title.none.fl_str_mv Detection and identification of high Andean plant communities, Wetlands and Tolar de Puna Seca by means of RGB and NDVI orthophotos in “Unmanned Aerial Systems” drones
Detección e identificación de comunidades vegetales altoandinas, Bofedal y Tolar de Puna Seca mediante ortofotografías RGB y NDVI en drones “Sistemas Aéreos no Tripulados”
title Detection and identification of high Andean plant communities, Wetlands and Tolar de Puna Seca by means of RGB and NDVI orthophotos in “Unmanned Aerial Systems” drones
spellingShingle Detection and identification of high Andean plant communities, Wetlands and Tolar de Puna Seca by means of RGB and NDVI orthophotos in “Unmanned Aerial Systems” drones
Estrada Zúñiga, Andrés C.
Comunidad vegetal
Sensores remotos
Tolar
Bofedal
UAS
UAV
Plant community
Remote sensors
Tolar
Bofedal
UAS
UAV
title_short Detection and identification of high Andean plant communities, Wetlands and Tolar de Puna Seca by means of RGB and NDVI orthophotos in “Unmanned Aerial Systems” drones
title_full Detection and identification of high Andean plant communities, Wetlands and Tolar de Puna Seca by means of RGB and NDVI orthophotos in “Unmanned Aerial Systems” drones
title_fullStr Detection and identification of high Andean plant communities, Wetlands and Tolar de Puna Seca by means of RGB and NDVI orthophotos in “Unmanned Aerial Systems” drones
title_full_unstemmed Detection and identification of high Andean plant communities, Wetlands and Tolar de Puna Seca by means of RGB and NDVI orthophotos in “Unmanned Aerial Systems” drones
title_sort Detection and identification of high Andean plant communities, Wetlands and Tolar de Puna Seca by means of RGB and NDVI orthophotos in “Unmanned Aerial Systems” drones
dc.creator.none.fl_str_mv Estrada Zúñiga, Andrés C.
Ñaupari Vásquez, Javier
author Estrada Zúñiga, Andrés C.
author_facet Estrada Zúñiga, Andrés C.
Ñaupari Vásquez, Javier
author_role author
author2 Ñaupari Vásquez, Javier
author2_role author
dc.subject.none.fl_str_mv Comunidad vegetal
Sensores remotos
Tolar
Bofedal
UAS
UAV
Plant community
Remote sensors
Tolar
Bofedal
UAS
UAV
topic Comunidad vegetal
Sensores remotos
Tolar
Bofedal
UAS
UAV
Plant community
Remote sensors
Tolar
Bofedal
UAS
UAV
description Remote sensing and geographic information systems are tools that in the last decade have been widely used in the management of natural resources, however, they have presented deficiencies for precision livestock studies due to the quality of spatial resolutions, spectral and temporal. Faced with this limitation, microsensors appear as an alternative in Unmanned Aerial Systems (UAS) that allow obtaining orthophotographs with better resolutions. Considering these advantages, a study was developed to determine the best flight height in the detection and identification of the tolar and bofedal plant communities of the dry puna. For the study, RGB and NDVI photographs were collected with ZENMUSE X3 DJI RGB-NDVI sensors in UAS with flight heights of 25, 50, 75 and 100 m. In the field, tola plants and DIMU cushions were counted in quadrants of 10 m x 10 m (100 m2). The preparation of orthophotographs was carried out in the Pix 4D software and to analyze the information an algorithm was developed with the ability to identify a segmented element (tola Plant and / or DIMU cushion) using Python. The study found that the NDVI range for the identification of tolares of Parastrephia lepidophilla is from 0.20 to 0.45 and for Distichia muscoides bogs is from 0.68 to 0.95; finally, using RGB and NDVI orthophotographs, it was determined that the best flight height to identify the Tola and DIMU segmented species is 25 m followed by 50 m.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3677
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3677
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3677/6811
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3677/4341
dc.rights.none.fl_str_mv Derechos de autor 2021 Andrés C. Estrada Zúñiga, Javier Ñaupari Vásquez
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Andrés C. Estrada Zúñiga, Javier Ñaupari Vásquez
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 12 Núm. 3 (2021): Julio - Septiembre; 291-301
Scientia Agropecuaria; Vol. 12 No. 3 (2021): Julio - Septiembre; 291-301
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845253380028497920
spelling Detection and identification of high Andean plant communities, Wetlands and Tolar de Puna Seca by means of RGB and NDVI orthophotos in “Unmanned Aerial Systems” dronesDetección e identificación de comunidades vegetales altoandinas, Bofedal y Tolar de Puna Seca mediante ortofotografías RGB y NDVI en drones “Sistemas Aéreos no Tripulados”Estrada Zúñiga, Andrés C. Ñaupari Vásquez, Javier Comunidad vegetalSensores remotosTolarBofedalUASUAVPlant communityRemote sensorsTolarBofedalUASUAVRemote sensing and geographic information systems are tools that in the last decade have been widely used in the management of natural resources, however, they have presented deficiencies for precision livestock studies due to the quality of spatial resolutions, spectral and temporal. Faced with this limitation, microsensors appear as an alternative in Unmanned Aerial Systems (UAS) that allow obtaining orthophotographs with better resolutions. Considering these advantages, a study was developed to determine the best flight height in the detection and identification of the tolar and bofedal plant communities of the dry puna. For the study, RGB and NDVI photographs were collected with ZENMUSE X3 DJI RGB-NDVI sensors in UAS with flight heights of 25, 50, 75 and 100 m. In the field, tola plants and DIMU cushions were counted in quadrants of 10 m x 10 m (100 m2). The preparation of orthophotographs was carried out in the Pix 4D software and to analyze the information an algorithm was developed with the ability to identify a segmented element (tola Plant and / or DIMU cushion) using Python. The study found that the NDVI range for the identification of tolares of Parastrephia lepidophilla is from 0.20 to 0.45 and for Distichia muscoides bogs is from 0.68 to 0.95; finally, using RGB and NDVI orthophotographs, it was determined that the best flight height to identify the Tola and DIMU segmented species is 25 m followed by 50 m.La teledetección y los sistemas de información geográfica son herramientas que en la última década se utilizan con énfasis en la gestión de recursos naturales; sin embargo, éstas han presentado deficiencias para estudios de ganadería de precisión debido a la calidad de las resoluciones espacial, espectral y temporal de las imágenes, frente a esta limitación aparece como alternativa los microsensores en sistemas aéreos no tripulados (UAS) que permiten obtener ortofotografías con mejores resoluciones. Considerando estas ventajas se desarrolló un estudio para determinar la mejor altura de vuelo de las UAV en la detección e identificación de las comunidades vegetales tolar y bofedal de puna seca. Para el estudio se recopilaron fotografías RGB y NDVI con sensores ZENMUSE X3 DJI RGB-NDVI en UAS con alturas de vuelo de 25, 50, 75 y 100 m. En el campo se contabilizaron plantas de tola y cojines de DIMU en cuadrantes de 10 m x 10 m (100 m2). La preparación de ortofotografías se realizó en el software Pix 4D y para analizar la información se elaboró un algoritmo con capacidad de identificar un elemento segmentado (planta de tola y/o cojín de DIMU) utilizando el lenguaje de programación Python. El estudio determinó que el rango de NDVI para la identificación de tolares de Parastrephia lepidophilla es de 0,20 a 0,45 y para bofedales de Distichia muscoides es de 0,68 a 0,95; finalmente usando ortofotografías RGB y NDVI se determinó que la mejor altura de vuelo para identificar las especies segmentadas Tola y DIMU es de 25 m seguido de 50 m.Universidad Nacional de Trujillo2021-07-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3677Scientia Agropecuaria; Vol. 12 Núm. 3 (2021): Julio - Septiembre; 291-301Scientia Agropecuaria; Vol. 12 No. 3 (2021): Julio - Septiembre; 291-3012306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3677/6811https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3677/4341Derechos de autor 2021 Andrés C. Estrada Zúñiga, Javier Ñaupari Vásquezhttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/36772021-07-20T17:10:58Z
score 13.243185
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).