Hopf bifurcation in an autonomous system with logistic growth and Holling type II functional response

Descripción del Articulo

The autonomous prey-predator system with logistic growth and Holling type II functional response, which describes the population dynamics of two species. In this study, the equilibrium points of the system (1.1) were identified. Two saddle-node points and one non-trivial P3 equilibrium point were fo...

Descripción completa

Detalles Bibliográficos
Autores: Paz Vidal, Danny Estefany, Salazar Gordillo, Joan Esteban
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5303
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5303
Nivel de acceso:acceso abierto
Materia:sistemas dinamicos
puntos de equilibrio
crecimiento logistico
respuesta funcional de holling tipo ii
bifurcación de hopf
Dynamical system
Hopf bifurcation
Hartman-Grobman theorem
phase portrait
Holling type II functional response
Sistema dinámico
bifurcación de Hopf
teorema de Hartman-Grobman
retrato fase
respuesta funcional de Holling tipo II
Descripción
Sumario:The autonomous prey-predator system with logistic growth and Holling type II functional response, which describes the population dynamics of two species. In this study, the equilibrium points of the system (1.1) were identified. Two saddle-node points and one non-trivial P3 equilibrium point were found. For this latter point, the conditions were determined for the Jacobian matrix of (1.1), evaluated at P3, to have a pair of purely complex eigenvalues (necessary condition for the Hopf bifurcation). Through this analysis, values c0, δ0, k0 were found that satisfied these conditions. Subsequently, each of these values is considered as a bifurcation parameter value, and the remaining two are considered as control parameters, under the assumptions of the normal form theorem for the Hopf bifurcation, it’s concluded that by varying these values slightly, the system undergoes the Hopf bifurcation. Finally, the first Lyapunov coefficient was calculated to determine the conditions under which the system exhibits supercritical, subcritical, and degenerate Hopf bifurcation. The analysis was supported by using MAPLE and MATLAB software, which enabled graphical visualization of the obtained results.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).