A note about a Morse's conjecture
Descripción del Articulo
In dynamical systems it is known that metrically transitive systems are topologically transitive. M. Morse in 1946 ([1]) conjectured that if the dynamical system has some degree of regularity, then the converse is true. In this article, we will study the Morse conjecture for R2-actions on three-dime...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/6624 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6624 |
| Nivel de acceso: | acceso abierto |
| Materia: | Topological Transitive Group Action Metrically Transitive |
| id |
REVUNITRU_6da6e7addbe59c33d618bfc2069a757e |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/6624 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
A note about a Morse's conjectureA note about a Morse's conjectureA note about a Morse's conjectureHuaraca Vargas, Walter T.Topological TransitiveGroup ActionMetrically TransitiveTopological TransitiveGroup ActionMetrically TransitiveTopological TransitiveGroup ActionMetrically TransitiveIn dynamical systems it is known that metrically transitive systems are topologically transitive. M. Morse in 1946 ([1]) conjectured that if the dynamical system has some degree of regularity, then the converse is true. In this article, we will study the Morse conjecture for R2-actions on three-dimensional manifolds and prove the following two results: The conjecture is false if we do not impose restrictions on the singular set and we will prove that The Morse’s Conjecture is valid for locally free actions.In dynamical systems it is known that metrically transitive systems are topologically transitive. M. Morse in 1946 ([1]) conjectured that if the dynamical system has some degree of regularity, then the converse is true. In this article, we will study the Morse conjecture for R2-actions on three-dimensional manifolds and prove the following two results: The conjecture is false if we do not impose restrictions on the singular set and we will prove that The Morse’s Conjecture is valid for locally free actions.In dynamical systems it is known that metrically transitive systems are topologically transitive. M. Morse in 1946 ([1]) conjectured that if the dynamical system has some degree of regularity, then the converse is true. In this article, we will study the Morse conjecture for R2-actions on three-dimensional manifolds and prove the following two results: The conjecture is false if we do not impose restrictions on the singular set and we will prove that The Morse’s Conjecture is valid for locally free actions.National University of Trujillo - Academic Department of Mathematics2025-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6624Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 90 - 96Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 90 - 96Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 90 - 962411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6624/6858https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/66242025-07-26T15:43:48Z |
| dc.title.none.fl_str_mv |
A note about a Morse's conjecture A note about a Morse's conjecture A note about a Morse's conjecture |
| title |
A note about a Morse's conjecture |
| spellingShingle |
A note about a Morse's conjecture Huaraca Vargas, Walter T. Topological Transitive Group Action Metrically Transitive Topological Transitive Group Action Metrically Transitive Topological Transitive Group Action Metrically Transitive |
| title_short |
A note about a Morse's conjecture |
| title_full |
A note about a Morse's conjecture |
| title_fullStr |
A note about a Morse's conjecture |
| title_full_unstemmed |
A note about a Morse's conjecture |
| title_sort |
A note about a Morse's conjecture |
| dc.creator.none.fl_str_mv |
Huaraca Vargas, Walter T. |
| author |
Huaraca Vargas, Walter T. |
| author_facet |
Huaraca Vargas, Walter T. |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Topological Transitive Group Action Metrically Transitive Topological Transitive Group Action Metrically Transitive Topological Transitive Group Action Metrically Transitive |
| topic |
Topological Transitive Group Action Metrically Transitive Topological Transitive Group Action Metrically Transitive Topological Transitive Group Action Metrically Transitive |
| description |
In dynamical systems it is known that metrically transitive systems are topologically transitive. M. Morse in 1946 ([1]) conjectured that if the dynamical system has some degree of regularity, then the converse is true. In this article, we will study the Morse conjecture for R2-actions on three-dimensional manifolds and prove the following two results: The conjecture is false if we do not impose restrictions on the singular set and we will prove that The Morse’s Conjecture is valid for locally free actions. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-07-26 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6624 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6624 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6624/6858 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 90 - 96 Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 90 - 96 Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 90 - 96 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1847155319645405184 |
| score |
13.422088 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).