El Teorema de Iwasawa

Descripción del Articulo

Sean G un grupo, Ω un conjunto y K = {g ∈ G | ω * g = ω, Ɐω ∈ Ω} el núcleo de Ω donde G actua sobre el conjunto Ω. Mostraremos que G/K es simple en el caso que el grupo G verifique ser primitivo sobre Ω, así como también que sea igual a su subgrupo derivado y por último si α ∈ Ω entonces Gα tiene un...

Descripción completa

Detalles Bibliográficos
Autores: Mejía Alemán, Carlos, Santiago Saldaña, Mario Enrique
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:revistasinvestigacion.unmsm.edu.pe:article/20511
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/20511
Nivel de acceso:acceso abierto
Materia:action
transitive
primitive group
block and kernel
acción
transitivo
grupo primitivo
bloque y núcleo
Descripción
Sumario:Sean G un grupo, Ω un conjunto y K = {g ∈ G | ω * g = ω, Ɐω ∈ Ω} el núcleo de Ω donde G actua sobre el conjunto Ω. Mostraremos que G/K es simple en el caso que el grupo G verifique ser primitivo sobre Ω, así como también que sea igual a su subgrupo derivado y por último si α ∈ Ω entonces Gα tiene un subgrupo A que es abeliano y normal tal que G =< Ag | g ∈ G >, donde Gα es el estabilizador de α en G. Para finalizar daremos una aplicación de que el grupo alternante A5 es simple.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).