Lee-Carter method for forecasting mortality for Peruvian Population

Descripción del Articulo

In this article, we have modeled mortality rates of Peruvian female and male populations during the period of 1950-2017 using the two-factor Lee-Carter (LC) model. The stochastic mortality model was introduced by Lee and Carter (1992) and has been used by many authors for fitting a...

Descripción completa

Detalles Bibliográficos
Autores: Cerda-Hernández, J., Sikov, A.
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/3702
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3702
Nivel de acceso:acceso abierto
Materia:Lee-Carter (LC) model
Mortality modeling
Forecasting
Life expectancy
Singular value decomposition (SVD)
Descripción
Sumario:In this article, we have modeled mortality rates of Peruvian female and male populations during the period of 1950-2017 using the two-factor Lee-Carter (LC) model. The stochastic mortality model was introduced by Lee and Carter (1992) and has been used by many authors for fitting and forecasting the human mortality rates. The Singular Value Decomposition (SVD) approach is used for estimation of the parameters of the LC model. Utilizing the best fitted auto regressive integrated moving average (ARIMA) model we forecast the values of the time dependent parameter of the LC model for the next thirty years. The forecasted values of life expectancy at different age group with 95% confidence intervals are also reported for the next thirty  years. In this research we use the data, obtained from the Peruvian National Institute of Statistics (INEI).  
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).