A theorem about linear rank inequalities that depend on the characteristic of the finite field

Descripción del Articulo

A linear rank inequality is a linear inequality that holds by dimensions of vector spaces over any finite field. A characteristic-dependent linear rank inequality is also a linear inequality that involves dimensions of vector spaces but this holds over finite fields of determined characteristics, an...

Descripción completa

Detalles Bibliográficos
Autor: Peña Macias, Victor
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/4177
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4177
Nivel de acceso:acceso abierto
Materia:Mutually complementary vector spaces
Binary matrix
Finite field
Entropy
Linear rank inequality
Espacios vectoriales mutuamente complementarios
Matriz binaria
Cuerpo finito
Entropía
Desigualdad rango lineal
id REVUNITRU_35e9dd237520b260205b94675b213acf
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/4177
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling A theorem about linear rank inequalities that depend on the characteristic of the finite fieldUn teorema sobre desigualdades rango lineales que dependen de la caractertística del cuerpo finitoPeña Macias, VictorMutually complementary vector spacesBinary matrixFinite fieldEntropyLinear rank inequalityEspacios vectoriales mutuamente complementariosMatriz binariaCuerpo finitoEntropíaDesigualdad rango linealA linear rank inequality is a linear inequality that holds by dimensions of vector spaces over any finite field. A characteristic-dependent linear rank inequality is also a linear inequality that involves dimensions of vector spaces but this holds over finite fields of determined characteristics, and does not in general hold over other characteristics. In this paper, using as guide binary matrices whose ranks depend on the finite field where they are defined, we show a theorem which explicitly produces characteristic-dependent linear rank inequalities; this theorem generalizes results previously obtained in the literature.Una desigualdad rango lineal es una desigualdad lineal que es válida para dimensiones de espacios vectoriales sobre un cuerpo finito. Una desigualdad rango lineal dependiente de la característica es también una desigualdad lineal para dimensiones de espacios vectoriales pero ésta es válida sobre cuerpos finitos de determinada característica, y no es válida en general sobre otras características. En este documento, usando como guía matrices binarias cuyos rangos dependen del cuerpo finito en donde están definidas, nosotros presentamos un teorema que produce explícitamente desigualdades rango lineales dependientes de la característica; ´este teorema generaliza resultados obtenidos previamente en la literatura.National University of Trujillo - Academic Department of Mathematics2022-07-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/4177Selecciones Matemáticas; Vol. 9 No. 01 (2022): January - July; 150 - 160Selecciones Matemáticas; Vol. 9 Núm. 01 (2022): Enero - Julio; 150 - 160Selecciones Matemáticas; v. 9 n. 01 (2022): Janeiro - Julho; 150 - 1602411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/4177/4993Derechos de autor 2022 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/41772022-07-27T15:32:31Z
dc.title.none.fl_str_mv A theorem about linear rank inequalities that depend on the characteristic of the finite field
Un teorema sobre desigualdades rango lineales que dependen de la caractertística del cuerpo finito
title A theorem about linear rank inequalities that depend on the characteristic of the finite field
spellingShingle A theorem about linear rank inequalities that depend on the characteristic of the finite field
Peña Macias, Victor
Mutually complementary vector spaces
Binary matrix
Finite field
Entropy
Linear rank inequality
Espacios vectoriales mutuamente complementarios
Matriz binaria
Cuerpo finito
Entropía
Desigualdad rango lineal
title_short A theorem about linear rank inequalities that depend on the characteristic of the finite field
title_full A theorem about linear rank inequalities that depend on the characteristic of the finite field
title_fullStr A theorem about linear rank inequalities that depend on the characteristic of the finite field
title_full_unstemmed A theorem about linear rank inequalities that depend on the characteristic of the finite field
title_sort A theorem about linear rank inequalities that depend on the characteristic of the finite field
dc.creator.none.fl_str_mv Peña Macias, Victor
author Peña Macias, Victor
author_facet Peña Macias, Victor
author_role author
dc.subject.none.fl_str_mv Mutually complementary vector spaces
Binary matrix
Finite field
Entropy
Linear rank inequality
Espacios vectoriales mutuamente complementarios
Matriz binaria
Cuerpo finito
Entropía
Desigualdad rango lineal
topic Mutually complementary vector spaces
Binary matrix
Finite field
Entropy
Linear rank inequality
Espacios vectoriales mutuamente complementarios
Matriz binaria
Cuerpo finito
Entropía
Desigualdad rango lineal
description A linear rank inequality is a linear inequality that holds by dimensions of vector spaces over any finite field. A characteristic-dependent linear rank inequality is also a linear inequality that involves dimensions of vector spaces but this holds over finite fields of determined characteristics, and does not in general hold over other characteristics. In this paper, using as guide binary matrices whose ranks depend on the finite field where they are defined, we show a theorem which explicitly produces characteristic-dependent linear rank inequalities; this theorem generalizes results previously obtained in the literature.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4177
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4177
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4177/4993
dc.rights.none.fl_str_mv Derechos de autor 2022 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 9 No. 01 (2022): January - July; 150 - 160
Selecciones Matemáticas; Vol. 9 Núm. 01 (2022): Enero - Julio; 150 - 160
Selecciones Matemáticas; v. 9 n. 01 (2022): Janeiro - Julho; 150 - 160
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846521102552006656
score 13.377223
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).