A theorem about linear rank inequalities that depend on the characteristic of the finite field

Descripción del Articulo

A linear rank inequality is a linear inequality that holds by dimensions of vector spaces over any finite field. A characteristic-dependent linear rank inequality is also a linear inequality that involves dimensions of vector spaces but this holds over finite fields of determined characteristics, an...

Descripción completa

Detalles Bibliográficos
Autor: Peña Macias, Victor
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/4177
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4177
Nivel de acceso:acceso abierto
Materia:Mutually complementary vector spaces
Binary matrix
Finite field
Entropy
Linear rank inequality
Espacios vectoriales mutuamente complementarios
Matriz binaria
Cuerpo finito
Entropía
Desigualdad rango lineal
Descripción
Sumario:A linear rank inequality is a linear inequality that holds by dimensions of vector spaces over any finite field. A characteristic-dependent linear rank inequality is also a linear inequality that involves dimensions of vector spaces but this holds over finite fields of determined characteristics, and does not in general hold over other characteristics. In this paper, using as guide binary matrices whose ranks depend on the finite field where they are defined, we show a theorem which explicitly produces characteristic-dependent linear rank inequalities; this theorem generalizes results previously obtained in the literature.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).