Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning

Descripción del Articulo

The emergence of Machine Learning (ML) technologies and their integration into agriculture has demonstrated a significant impact on disease detection in crops, enabling continuous monitoring and enhancing risk planning and management. This study applied image processing techniques such as thresholdi...

Descripción completa

Detalles Bibliográficos
Autores: Aguirre-Rodrı́guez, Elen Yanina, Rodriguez Gamboa, Alexander Alberto, Aguirre Rodrı́guez, Elias Carlos, Santos-Fernández, Juan Pedro, Nascimento, Luiz Fernando Costa, da Silva, Aneirson Francisco, Marins, Fernando Augusto Silva
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6223
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6223
Nivel de acceso:acceso abierto
Materia:leaf disease
disease classification
disease detection
image processing
machine learning
random forest
id REVUNITRU_2fc7d1efe233552ac6d3e06bc84ccf42
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6223
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine LearningAguirre-Rodrı́guez, Elen Yanina Rodriguez Gamboa, Alexander AlbertoAguirre Rodrı́guez, Elias CarlosSantos-Fernández, Juan PedroNascimento, Luiz Fernando Costada Silva, Aneirson FranciscoMarins, Fernando Augusto Silvaleaf diseasedisease classificationdisease detectionimage processingmachine learningrandom forestThe emergence of Machine Learning (ML) technologies and their integration into agriculture has demonstrated a significant impact on disease detection in crops, enabling continuous monitoring and enhancing risk planning and management. This study applied image processing techniques such as thresholding, gamma correction, and the Stretched Neighborhood Effect Color to Grayscale (SNECG) method, alongside ML, to develop a predictive model for identifying five types of rice diseases. The ML techniques used included Logistic Regression, Multilayer Perceptron, Support Vector Machines, Decision Trees, and Random Forests (RF). Hyperparameters were optimized and evaluated through 5-fold cross-validation. In the results, the SNECG method successfully converted images to grayscale, capturing essential features of lesions on rice leaves. The ML models developed with these techniques showed evaluation metrics exceeding 80%, with the RF model (precision = 88.31%) demonstrating superior performance. Additionally, the RF model was integrated into an interface designed for agricultural decision-making. The practical application of the developed model could significantly improve the ability to detect and manage diseases in rice crops.  Universidad Nacional de Trujillo2025-01-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6223Scientia Agropecuaria; Vol. 16 Núm. 1 (2025): Enero-Marzo; 123-136Scientia Agropecuaria; Vol. 16 No. 1 (2025): Enero-Marzo; 123-1362306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6223/6458https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6223/6333Derechos de autor 2025 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/62232025-01-28T19:15:38Z
dc.title.none.fl_str_mv Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning
title Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning
spellingShingle Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning
Aguirre-Rodrı́guez, Elen Yanina
leaf disease
disease classification
disease detection
image processing
machine learning
random forest
title_short Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning
title_full Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning
title_fullStr Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning
title_full_unstemmed Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning
title_sort Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning
dc.creator.none.fl_str_mv Aguirre-Rodrı́guez, Elen Yanina
Rodriguez Gamboa, Alexander Alberto
Aguirre Rodrı́guez, Elias Carlos
Santos-Fernández, Juan Pedro
Nascimento, Luiz Fernando Costa
da Silva, Aneirson Francisco
Marins, Fernando Augusto Silva
author Aguirre-Rodrı́guez, Elen Yanina
author_facet Aguirre-Rodrı́guez, Elen Yanina
Rodriguez Gamboa, Alexander Alberto
Aguirre Rodrı́guez, Elias Carlos
Santos-Fernández, Juan Pedro
Nascimento, Luiz Fernando Costa
da Silva, Aneirson Francisco
Marins, Fernando Augusto Silva
author_role author
author2 Rodriguez Gamboa, Alexander Alberto
Aguirre Rodrı́guez, Elias Carlos
Santos-Fernández, Juan Pedro
Nascimento, Luiz Fernando Costa
da Silva, Aneirson Francisco
Marins, Fernando Augusto Silva
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv leaf disease
disease classification
disease detection
image processing
machine learning
random forest
topic leaf disease
disease classification
disease detection
image processing
machine learning
random forest
description The emergence of Machine Learning (ML) technologies and their integration into agriculture has demonstrated a significant impact on disease detection in crops, enabling continuous monitoring and enhancing risk planning and management. This study applied image processing techniques such as thresholding, gamma correction, and the Stretched Neighborhood Effect Color to Grayscale (SNECG) method, alongside ML, to develop a predictive model for identifying five types of rice diseases. The ML techniques used included Logistic Regression, Multilayer Perceptron, Support Vector Machines, Decision Trees, and Random Forests (RF). Hyperparameters were optimized and evaluated through 5-fold cross-validation. In the results, the SNECG method successfully converted images to grayscale, capturing essential features of lesions on rice leaves. The ML models developed with these techniques showed evaluation metrics exceeding 80%, with the RF model (precision = 88.31%) demonstrating superior performance. Additionally, the RF model was integrated into an interface designed for agricultural decision-making. The practical application of the developed model could significantly improve the ability to detect and manage diseases in rice crops.  
publishDate 2025
dc.date.none.fl_str_mv 2025-01-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6223
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6223
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6223/6458
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6223/6333
dc.rights.none.fl_str_mv Derechos de autor 2025 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 16 Núm. 1 (2025): Enero-Marzo; 123-136
Scientia Agropecuaria; Vol. 16 No. 1 (2025): Enero-Marzo; 123-136
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846521098278010880
score 13.088951
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).