Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning

Descripción del Articulo

The emergence of Machine Learning (ML) technologies and their integration into agriculture has demonstrated a significant impact on disease detection in crops, enabling continuous monitoring and enhancing risk planning and management. This study applied image processing techniques such as thresholdi...

Descripción completa

Detalles Bibliográficos
Autores: Aguirre-Rodrı́guez, Elen Yanina, Rodriguez Gamboa, Alexander Alberto, Aguirre Rodrı́guez, Elias Carlos, Santos-Fernández, Juan Pedro, Nascimento, Luiz Fernando Costa, da Silva, Aneirson Francisco, Marins, Fernando Augusto Silva
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6223
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6223
Nivel de acceso:acceso abierto
Materia:leaf disease
disease classification
disease detection
image processing
machine learning
random forest
Descripción
Sumario:The emergence of Machine Learning (ML) technologies and their integration into agriculture has demonstrated a significant impact on disease detection in crops, enabling continuous monitoring and enhancing risk planning and management. This study applied image processing techniques such as thresholding, gamma correction, and the Stretched Neighborhood Effect Color to Grayscale (SNECG) method, alongside ML, to develop a predictive model for identifying five types of rice diseases. The ML techniques used included Logistic Regression, Multilayer Perceptron, Support Vector Machines, Decision Trees, and Random Forests (RF). Hyperparameters were optimized and evaluated through 5-fold cross-validation. In the results, the SNECG method successfully converted images to grayscale, capturing essential features of lesions on rice leaves. The ML models developed with these techniques showed evaluation metrics exceeding 80%, with the RF model (precision = 88.31%) demonstrating superior performance. Additionally, the RF model was integrated into an interface designed for agricultural decision-making. The practical application of the developed model could significantly improve the ability to detect and manage diseases in rice crops.  
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).