Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America

Descripción del Articulo

Deep learning methods can be applied to generate predictive models. We worked with the gross domestic product (GDP) of six Latin American countries: Argentina, Brazil, Chile, Colombia, Mexico, and Peru, using annual and quarterly macroeconomic indicators from the World Bank and the Economic Commissi...

Descripción completa

Detalles Bibliográficos
Autores: Alegre Ibáñez, Víctor Augusto, Lozano Aparicio, Jose Martin
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/5817
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817
Nivel de acceso:acceso abierto
Materia:Deep Learning
GDP forecasting
CEPAL
Neural Network
Aprendizaje Profundo
Pronóstico de PBI
Redes Neuronales
Descripción
Sumario:Deep learning methods can be applied to generate predictive models. We worked with the gross domestic product (GDP) of six Latin American countries: Argentina, Brazil, Chile, Colombia, Mexico, and Peru, using annual and quarterly macroeconomic indicators from the World Bank and the Economic Commission for Latin America and the Caribbean (ECLAC), respectively. For the pre-processing of the data, we decomposed the quarterly series into trend, seasonality, and residual and used them as additional characteristics to provide more information to the models. In addition, outliers resulting from the impact of the COVID-19 pandemic on the world economy were replaced. Multilayer perceptron, convolutional neural networks, LSTM, GRU, and SeqToSeq models were built for each country and their series’ frequency, then evaluated by continuous cross-validation and MAE, RMSE, and MAPE metrics. The optimal models vary for each case.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).