A comparison of machine learning techniques for detection of phishing websites
Descripción del Articulo
Phishing is the theft of personal data through fake websites. Victims of this type of theft are directed to a fake website, where they are asked to enter their data to validate their identity. At that moment, theft is carried out, since entered data are stored and used by the hacker responsible for...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad de Lima |
Repositorio: | Revistas - Universidad de Lima |
Lenguaje: | español |
OAI Identifier: | oai:ojs.pkp.sfu.ca:article/4886 |
Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4886 |
Nivel de acceso: | acceso abierto |
Materia: | Anti-Phishing Machine Learning Cibersecurity Phishing Warning Phishing Ciberattack Ciberseguridad Advertencia Phishing Ciberataque |
id |
REVULIMA_020aef89c2a27b5cd224e14272ae7215 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/4886 |
network_acronym_str |
REVULIMA |
network_name_str |
Revistas - Universidad de Lima |
repository_id_str |
|
spelling |
A comparison of machine learning techniques for detection of phishing websitesComparación de técnicas de machine learning para detección de sitios web de phishingMoncada Vargas, Andrés EduardoMoncada Vargas, Andrés EduardoAnti-PhishingMachine LearningCibersecurityPhishing WarningPhishingCiberattackAnti-PhishingMachine LearningCiberseguridadAdvertencia PhishingPhishingCiberataquePhishing is the theft of personal data through fake websites. Victims of this type of theft are directed to a fake website, where they are asked to enter their data to validate their identity. At that moment, theft is carried out, since entered data are stored and used by the hacker responsible for said attack to sell them or enter to websites and perform a fraud or scam. In order to conduct this work, we researched different methods for detecting phishing websites by using machine learning techniques. Thus, the purpose of this work is to compare machine learning techniques that have demonstrated to be the most effective methods to detect phishing websites. The results show that decision tree classifiers such as Decision Tree and Random Forest have achieved the highest accuracy and efficacy rates, with values between 97% and 99%, in detecting these types of websites.El phishing es el robo de datos personales a través de páginas web falsas. La víctima de este robo es dirigida a esta página falsa, donde se le solicita ingresar sus datos para validar su identidad. Es en ese momento que se realiza el robo, ya que al ingresar sus datos, estos son almacenados y usados por el hacker responsable de dicho ataque para venderlos o ingresar a las entidades y realizar robos o estafas. Para este trabajo se ha investigado sobre distintos métodos de detección de páginas web phishing utilizando técnicas de machine learning. Así, el propósito de este trabajo es realizar una comparación de dichas técnicas que han demostrado ser las más efectivas en la detección de los sitios web phishing. Los resultados obtenidos demuestran que los clasificadores de árboles, denominados Árbol de Decisión y Bosque Aleatorio, han alcanzado las mayores tasas de precisión y efectividad, con valores de entre 97 % y 99 % en la detección de este tipo de páginas.Universidad de Lima2020-12-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/488610.26439/interfases2020.n013.4886Interfases; No. 013 (2020); 77-103Interfases; Núm. 013 (2020); 77-103Interfases; n. 013 (2020); 77-1031993-491210.26439/interfases2020.n013reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/4886/4873Derechos de autor 2020 Revista Interfasesinfo:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/48862023-07-24T13:32:54Z |
dc.title.none.fl_str_mv |
A comparison of machine learning techniques for detection of phishing websites Comparación de técnicas de machine learning para detección de sitios web de phishing |
title |
A comparison of machine learning techniques for detection of phishing websites |
spellingShingle |
A comparison of machine learning techniques for detection of phishing websites Moncada Vargas, Andrés Eduardo Anti-Phishing Machine Learning Cibersecurity Phishing Warning Phishing Ciberattack Anti-Phishing Machine Learning Ciberseguridad Advertencia Phishing Phishing Ciberataque |
title_short |
A comparison of machine learning techniques for detection of phishing websites |
title_full |
A comparison of machine learning techniques for detection of phishing websites |
title_fullStr |
A comparison of machine learning techniques for detection of phishing websites |
title_full_unstemmed |
A comparison of machine learning techniques for detection of phishing websites |
title_sort |
A comparison of machine learning techniques for detection of phishing websites |
dc.creator.none.fl_str_mv |
Moncada Vargas, Andrés Eduardo Moncada Vargas, Andrés Eduardo |
author |
Moncada Vargas, Andrés Eduardo |
author_facet |
Moncada Vargas, Andrés Eduardo |
author_role |
author |
dc.subject.none.fl_str_mv |
Anti-Phishing Machine Learning Cibersecurity Phishing Warning Phishing Ciberattack Anti-Phishing Machine Learning Ciberseguridad Advertencia Phishing Phishing Ciberataque |
topic |
Anti-Phishing Machine Learning Cibersecurity Phishing Warning Phishing Ciberattack Anti-Phishing Machine Learning Ciberseguridad Advertencia Phishing Phishing Ciberataque |
description |
Phishing is the theft of personal data through fake websites. Victims of this type of theft are directed to a fake website, where they are asked to enter their data to validate their identity. At that moment, theft is carried out, since entered data are stored and used by the hacker responsible for said attack to sell them or enter to websites and perform a fraud or scam. In order to conduct this work, we researched different methods for detecting phishing websites by using machine learning techniques. Thus, the purpose of this work is to compare machine learning techniques that have demonstrated to be the most effective methods to detect phishing websites. The results show that decision tree classifiers such as Decision Tree and Random Forest have achieved the highest accuracy and efficacy rates, with values between 97% and 99%, in detecting these types of websites. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4886 10.26439/interfases2020.n013.4886 |
url |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4886 |
identifier_str_mv |
10.26439/interfases2020.n013.4886 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4886/4873 |
dc.rights.none.fl_str_mv |
Derechos de autor 2020 Revista Interfases info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2020 Revista Interfases |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Interfases; No. 013 (2020); 77-103 Interfases; Núm. 013 (2020); 77-103 Interfases; n. 013 (2020); 77-103 1993-4912 10.26439/interfases2020.n013 reponame:Revistas - Universidad de Lima instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
Revistas - Universidad de Lima |
collection |
Revistas - Universidad de Lima |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1846157624206163968 |
score |
13.882472 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).