Short-term real-time forecasting during turbulent times. A model for the Spanish GDP after the pandemic

Descripción del Articulo

Following the outbreak of the COVID-19 pandemic, most economic indicators experienced an increase in observed volatility, reducing the accuracy of nowcasting econometric models. In this paper, we propose a new specification for a mixed-frequency dynamic factor model used to nowcast the quarterly GDP...

Descripción completa

Detalles Bibliográficos
Autores: Gómez Loscos, Ana, González, Miguel Ángel, Pacce, Matías
Formato: artículo
Fecha de Publicación:2025
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:inglés
OAI Identifier:oai:ojs.pkp.sfu.ca:article/32575
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/32575
Nivel de acceso:acceso abierto
Materia:Business cycles
Nowcast
Dynamic factor models
COVID-19
id REVPUCP_9c73abb68a8fd02681b5f16430f76215
oai_identifier_str oai:ojs.pkp.sfu.ca:article/32575
network_acronym_str REVPUCP
network_name_str Revistas - Pontificia Universidad Católica del Perú
repository_id_str
spelling Short-term real-time forecasting during turbulent times. A model for the Spanish GDP after the pandemicGómez Loscos, AnaGonzález, Miguel ÁngelPacce, MatíasBusiness cyclesNowcastDynamic factor modelsCOVID-19Following the outbreak of the COVID-19 pandemic, most economic indicators experienced an increase in observed volatility, reducing the accuracy of nowcasting econometric models. In this paper, we propose a new specification for a mixed-frequency dynamic factor model used to nowcast the quarterly GDP growth rate of the Spanish economy –the Spain-STING–. With the aim of improving the predictive capacity of the model, we consider three proposals: (i) the relationship between the indicators and the estimated common factor is now contemporaneous, and not leading for some of the indicators; (ii) the variance of the common component is estimated by a stochastic process to allow it to vary over time; (iii) the set of variables is revised with the aim of including only those that add the most relevant information to the nowcast of the quarterly GDP growth rate. All these three modifications imply a notable improvement in the nowcasting performance during the period after the COVID-19 pandemic, while maintaining the accuracy obtained before it. These proposals could be also useful to revise other forecasting models.Pontificia Universidad Católica del Perú2025-12-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/economia/article/view/32575Economia; Vol. 48 No. 96 (2025); 1-25Economía; Vol. 48 Núm. 96 (2025); 1-252304-43060254-4415reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/economia/article/view/32575/28253http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/325752025-12-02T16:20:13Z
dc.title.none.fl_str_mv Short-term real-time forecasting during turbulent times. A model for the Spanish GDP after the pandemic
title Short-term real-time forecasting during turbulent times. A model for the Spanish GDP after the pandemic
spellingShingle Short-term real-time forecasting during turbulent times. A model for the Spanish GDP after the pandemic
Gómez Loscos, Ana
Business cycles
Nowcast
Dynamic factor models
COVID-19
title_short Short-term real-time forecasting during turbulent times. A model for the Spanish GDP after the pandemic
title_full Short-term real-time forecasting during turbulent times. A model for the Spanish GDP after the pandemic
title_fullStr Short-term real-time forecasting during turbulent times. A model for the Spanish GDP after the pandemic
title_full_unstemmed Short-term real-time forecasting during turbulent times. A model for the Spanish GDP after the pandemic
title_sort Short-term real-time forecasting during turbulent times. A model for the Spanish GDP after the pandemic
dc.creator.none.fl_str_mv Gómez Loscos, Ana
González, Miguel Ángel
Pacce, Matías
author Gómez Loscos, Ana
author_facet Gómez Loscos, Ana
González, Miguel Ángel
Pacce, Matías
author_role author
author2 González, Miguel Ángel
Pacce, Matías
author2_role author
author
dc.subject.none.fl_str_mv Business cycles
Nowcast
Dynamic factor models
COVID-19
topic Business cycles
Nowcast
Dynamic factor models
COVID-19
description Following the outbreak of the COVID-19 pandemic, most economic indicators experienced an increase in observed volatility, reducing the accuracy of nowcasting econometric models. In this paper, we propose a new specification for a mixed-frequency dynamic factor model used to nowcast the quarterly GDP growth rate of the Spanish economy –the Spain-STING–. With the aim of improving the predictive capacity of the model, we consider three proposals: (i) the relationship between the indicators and the estimated common factor is now contemporaneous, and not leading for some of the indicators; (ii) the variance of the common component is estimated by a stochastic process to allow it to vary over time; (iii) the set of variables is revised with the aim of including only those that add the most relevant information to the nowcast of the quarterly GDP growth rate. All these three modifications imply a notable improvement in the nowcasting performance during the period after the COVID-19 pandemic, while maintaining the accuracy obtained before it. These proposals could be also useful to revise other forecasting models.
publishDate 2025
dc.date.none.fl_str_mv 2025-12-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/32575
url http://revistas.pucp.edu.pe/index.php/economia/article/view/32575
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/32575/28253
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv Economia; Vol. 48 No. 96 (2025); 1-25
Economía; Vol. 48 Núm. 96 (2025); 1-25
2304-4306
0254-4415
reponame:Revistas - Pontificia Universidad Católica del Perú
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str Revistas - Pontificia Universidad Católica del Perú
collection Revistas - Pontificia Universidad Católica del Perú
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1852951628699664384
score 13.44655
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).