A Short Term Forecasting Model for the Spanish GDP and its Demand Components

Descripción del Articulo

This paper proposes a new version of the Spain-STING (Spain, Short-Term INdicator of Growth), a dynamic factor model used by the Banco de España for the short-term forecasting of the Spanish economy. The extended and revised version of the Spain-STING presented in this document includes a forecast f...

Descripción completa

Detalles Bibliográficos
Autores: Arencibia Pareja, Ana, Gomez-Loscos, Ana, de Luis López, Mercedes, Perez-Quiros, Gabriel
Formato: artículo
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:inglés
OAI Identifier:oai:revistaspuc:article/21873
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/21873
Nivel de acceso:acceso abierto
Materia:Business cycles
Spanish economy
Dynamic Factor models
Descripción
Sumario:This paper proposes a new version of the Spain-STING (Spain, Short-Term INdicator of Growth), a dynamic factor model used by the Banco de España for the short-term forecasting of the Spanish economy. The extended and revised version of the Spain-STING presented in this document includes a forecast for each of the demand components of the National Accounts. In order to select the indicators that best estimate the Spanish GDP and its demand components, several models are considered. Following this strategy, the selected models are those in which the common factor explains the highest proportion of the variance of the GDP. These models allow us to forecast GDP, private consumption, public expenditure, investment in capital goods, construction investment, exports and imports in a consistent way. We assess the predictive power of the models for GDP and its demand components for the period 2005–2017. With regard to the GDP forecast, we find some improvement of the predictive power compared to the previous version of Spain-STING. As for the demand components, we show that our proposal has better predictive power than other possible time series models.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).