Academic performance and sociocultural conditions of students from a rural educational institution in Peru

Descripción del Articulo

Educational institutions collect and manage information about their students in order to support decision-making aimed at improving academic performance and the overall achievement of their community. The objective of this research was to identify findings on academic performance considering sociocu...

Descripción completa

Detalles Bibliográficos
Autores: Ruelas, Donia, Ruelas, Elio, Carrera, Marta, Aceituno, Miguel
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú
Repositorio:Revista Innova Educación
Lenguaje:español
OAI Identifier:oai:ojs2.revistainnovaeducacion.com:article/1050
Enlace del recurso:https://revistainnovaeducacion.com/index.php/rie/article/view/1050
Nivel de acceso:acceso abierto
Materia:analítica del aprendizaje
aprendizaje automático
estudiantes de secundaria
rendimiento académico
zona rural
learning analytics
machine learning
secondary school students
academic performance
rural area
analítica da aprendizagem
aprendizado de máquina
estudantes do ensino secundário
desempenho acadêmico
id REVIE_3549456c3225648733c522f3597872f7
oai_identifier_str oai:ojs2.revistainnovaeducacion.com:article/1050
network_acronym_str REVIE
network_name_str Revista Innova Educación
repository_id_str
dc.title.none.fl_str_mv Academic performance and sociocultural conditions of students from a rural educational institution in Peru
Rendimiento académico y condiciones socioculturales de estudiantes de una institución educativa rural en Perú
Desempenho acadêmico e condições socioculturais de estudantes de uma instituição educacional rural do Peru
title Academic performance and sociocultural conditions of students from a rural educational institution in Peru
spellingShingle Academic performance and sociocultural conditions of students from a rural educational institution in Peru
Ruelas, Donia
analítica del aprendizaje
aprendizaje automático
estudiantes de secundaria
rendimiento académico
zona rural
learning analytics
machine learning
secondary school students
academic performance
rural area
analítica da aprendizagem
aprendizado de máquina
estudantes do ensino secundário
desempenho acadêmico
zona rural
title_short Academic performance and sociocultural conditions of students from a rural educational institution in Peru
title_full Academic performance and sociocultural conditions of students from a rural educational institution in Peru
title_fullStr Academic performance and sociocultural conditions of students from a rural educational institution in Peru
title_full_unstemmed Academic performance and sociocultural conditions of students from a rural educational institution in Peru
title_sort Academic performance and sociocultural conditions of students from a rural educational institution in Peru
dc.creator.none.fl_str_mv Ruelas, Donia
Ruelas, Elio
Carrera, Marta
Aceituno, Miguel
author Ruelas, Donia
author_facet Ruelas, Donia
Ruelas, Elio
Carrera, Marta
Aceituno, Miguel
author_role author
author2 Ruelas, Elio
Carrera, Marta
Aceituno, Miguel
author2_role author
author
author
dc.subject.none.fl_str_mv analítica del aprendizaje
aprendizaje automático
estudiantes de secundaria
rendimiento académico
zona rural
learning analytics
machine learning
secondary school students
academic performance
rural area
analítica da aprendizagem
aprendizado de máquina
estudantes do ensino secundário
desempenho acadêmico
zona rural
topic analítica del aprendizaje
aprendizaje automático
estudiantes de secundaria
rendimiento académico
zona rural
learning analytics
machine learning
secondary school students
academic performance
rural area
analítica da aprendizagem
aprendizado de máquina
estudantes do ensino secundário
desempenho acadêmico
zona rural
description Educational institutions collect and manage information about their students in order to support decision-making aimed at improving academic performance and the overall achievement of their community. The objective of this research was to identify findings on academic performance considering sociocultural factors throughout secondary education. The study followed the KDD process (Knowledge Discovery in Databases) and applied machine learning algorithms for data mining. As a result, two main findings were identified: first, the family environment and the level of student responsibility directly influenced academic performance; second, five student profiles were detected based on these factors: (1) favorable family environment and high level of responsibility, associated with outstanding performance; (2) favorable environment and low responsibility, with limited performance; (3) unfavorable environment and high responsibility, which partially compensates for family disadvantages; (4) unfavorable environment and low responsibility, linked to the lowest performance; and (5) intermediate profiles with mixed combinations of family conditions and responsibility. These findings, obtained through machine learning techniques, provide knowledge about the situation of the educational institution, facilitating more assertive decisions for the continuous improvement of academic performance in the rural sector of Peru. These findings derive from data collected in a specific rural institution; therefore, they may vary in studies conducted in urban contexts or other countries.
publishDate 2025
dc.date.none.fl_str_mv 2025-05-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistainnovaeducacion.com/index.php/rie/article/view/1050
10.35622/
url https://revistainnovaeducacion.com/index.php/rie/article/view/1050
identifier_str_mv 10.35622/
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistainnovaeducacion.com/index.php/rie/article/view/1050/950
dc.rights.none.fl_str_mv Derechos de autor 2025 Donia Ruelas, Elio Ruelas, Marta Carrera, Miguel Aceituno (Autor/a)
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Donia Ruelas, Elio Ruelas, Marta Carrera, Miguel Aceituno (Autor/a)
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú
publisher.none.fl_str_mv Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú
dc.source.none.fl_str_mv Revista Innova Educación; Vol. 7 Núm. 2 (2025); 88-105
2664-1496
2664-1488
10.35622/j.rie.2025.02
reponame:Revista Innova Educación
instname:Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú
instacron:INUDI
instname_str Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú
instacron_str INUDI
institution INUDI
reponame_str Revista Innova Educación
collection Revista Innova Educación
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845981803996774400
spelling Academic performance and sociocultural conditions of students from a rural educational institution in PeruRendimiento académico y condiciones socioculturales de estudiantes de una institución educativa rural en PerúDesempenho acadêmico e condições socioculturais de estudantes de uma instituição educacional rural do PeruRuelas, DoniaRuelas, ElioCarrera, MartaAceituno, Miguel analítica del aprendizajeaprendizaje automáticoestudiantes de secundariarendimiento académicozona rurallearning analyticsmachine learningsecondary school studentsacademic performancerural areaanalítica da aprendizagemaprendizado de máquinaestudantes do ensino secundáriodesempenho acadêmicozona ruralEducational institutions collect and manage information about their students in order to support decision-making aimed at improving academic performance and the overall achievement of their community. The objective of this research was to identify findings on academic performance considering sociocultural factors throughout secondary education. The study followed the KDD process (Knowledge Discovery in Databases) and applied machine learning algorithms for data mining. As a result, two main findings were identified: first, the family environment and the level of student responsibility directly influenced academic performance; second, five student profiles were detected based on these factors: (1) favorable family environment and high level of responsibility, associated with outstanding performance; (2) favorable environment and low responsibility, with limited performance; (3) unfavorable environment and high responsibility, which partially compensates for family disadvantages; (4) unfavorable environment and low responsibility, linked to the lowest performance; and (5) intermediate profiles with mixed combinations of family conditions and responsibility. These findings, obtained through machine learning techniques, provide knowledge about the situation of the educational institution, facilitating more assertive decisions for the continuous improvement of academic performance in the rural sector of Peru. These findings derive from data collected in a specific rural institution; therefore, they may vary in studies conducted in urban contexts or other countries.Las instituciones educativas recopilan y gestionan información de sus estudiantes con el fin de fundamentar la toma de decisiones orientadas a mejorar el rendimiento académico y el desempeño de su comunidad. El objetivo de esta investigación fue identificar hallazgos sobre el rendimiento académico considerando factores socioculturales a lo largo de la formación secundaria. El estudio siguió el proceso KDD (Descubrimiento de Conocimiento en Bases de Datos) y aplicó algoritmos de aprendizaje automático para la minería de datos. Como resultado, se identificaron dos hallazgos principales: en primer lugar, el entorno familiar y el nivel de responsabilidad influyeron directamente en el rendimiento académico; en segundo lugar, se detectaron cinco perfiles de estudiantes basados en estos factores: (1) entorno familiar favorable y alto nivel de responsabilidad, asociados a un rendimiento sobresaliente; (2) entorno favorable y baja responsabilidad, con desempeño limitado; (3) entorno desfavorable y alta responsabilidad, que permite compensar desventajas familiares; (4) entorno desfavorable y baja responsabilidad, vinculado al rendimiento más bajo; y (5) perfiles intermedios con combinaciones mixtas de condiciones familiares y responsabilidad. Estos hallazgos, obtenidos mediante técnicas de aprendizaje automático, brindan un conocimiento sobre la situación de la institución educativa, lo que facilita decisiones más asertivas para la mejora continua del rendimiento académico en el sector rural del Perú. Estos hallazgos derivan de datos de una institución rural específica; por tanto, podrían variar en investigaciones realizadas en contextos urbanos u otros países. As instituições de ensino coletam e gerenciam informações de seus estudantes com o objetivo de fundamentar a tomada de decisões voltadas para a melhoria do desempenho acadêmico e do rendimento de sua comunidade. O objetivo desta pesquisa foi identificar achados sobre o desempenho acadêmico considerando fatores socioculturais ao longo da formação secundária. O estudo seguiu o processo KDD (Descoberta de Conhecimento em Bases de Dados) e aplicou algoritmos de aprendizado de máquina para a mineração de dados. Como resultado, foram identificados dois achados principais: em primeiro lugar, o ambiente familiar e o nível de responsabilidade influenciaram diretamente o desempenho acadêmico; em segundo lugar, foram detectados cinco perfis de estudantes com base nesses fatores: (1) ambiente familiar favorável e alto nível de responsabilidade, associados a desempenho destacado; (2) ambiente favorável e baixa responsabilidade, com desempenho limitado; (3) ambiente desfavorável e alta responsabilidade, que permite compensar parcialmente as desvantagens familiares; (4) ambiente desfavorável e baixa responsabilidade, vinculado ao menor desempenho; e (5) perfis intermediários com combinações mistas de condições familiares e responsabilidade. Esses achados, obtidos por meio de técnicas de aprendizado de máquina, fornecem conhecimento sobre a situação da instituição de ensino, facilitando decisões mais assertivas para a melhoria contínua do desempenho acadêmico no setor rural do Peru. Esses resultados derivam de dados de uma instituição rural específica; portanto, podem variar em pesquisas realizadas em contextos urbanos ou em outros países.Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú2025-05-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistainnovaeducacion.com/index.php/rie/article/view/105010.35622/Revista Innova Educación; Vol. 7 Núm. 2 (2025); 88-1052664-14962664-148810.35622/j.rie.2025.02reponame:Revista Innova Educacióninstname:Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perúinstacron:INUDIspahttps://revistainnovaeducacion.com/index.php/rie/article/view/1050/950Derechos de autor 2025 Donia Ruelas, Elio Ruelas, Marta Carrera, Miguel Aceituno (Autor/a)https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs2.revistainnovaeducacion.com:article/10502025-09-04T22:07:40Z
score 13.8872795
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).