Predictive models of intensive care unit admission in patients with covid-19: systematic review
Descripción del Articulo
Background: It is essential to identify the epidemiological and clinical characteristics of patients infected with COVID-19 associated with disease progression leading to ICU admission. The objective was to systematically review the models or scores for predicting admission to the intensive care uni...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| Repositorio: | Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| Lenguaje: | español |
| OAI Identifier: | oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/1402 |
| Enlace del recurso: | https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402 |
| Nivel de acceso: | acceso abierto |
| Materia: | Modelos predictivos COVID-19 Unidad de cuidados intensivos Predicción Revisión sistemática Forecasting Intensive care unit Prediction Systematic review |
| id |
REVCMH_1f693c914f31489bad05b78cda423038 |
|---|---|
| oai_identifier_str |
oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/1402 |
| network_acronym_str |
REVCMH |
| network_name_str |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Predictive models of intensive care unit admission in patients with covid-19: systematic review Modelos predictivos de ingreso a la unidad de cuidados intensivos en pacientes con covid-19: revisión sistemática |
| title |
Predictive models of intensive care unit admission in patients with covid-19: systematic review |
| spellingShingle |
Predictive models of intensive care unit admission in patients with covid-19: systematic review Castañeda-Sabogal, Alex Modelos predictivos COVID-19 Unidad de cuidados intensivos Predicción Revisión sistemática Forecasting COVID-19 Intensive care unit Prediction Systematic review |
| title_short |
Predictive models of intensive care unit admission in patients with covid-19: systematic review |
| title_full |
Predictive models of intensive care unit admission in patients with covid-19: systematic review |
| title_fullStr |
Predictive models of intensive care unit admission in patients with covid-19: systematic review |
| title_full_unstemmed |
Predictive models of intensive care unit admission in patients with covid-19: systematic review |
| title_sort |
Predictive models of intensive care unit admission in patients with covid-19: systematic review |
| dc.creator.none.fl_str_mv |
Castañeda-Sabogal, Alex Rivera-Ramírez, Paola Espinoza-Rivera, Saúl León-Figueroa, Darwin A. Moreno-Ramos, Emilly Barboza, Joshuan J. |
| author |
Castañeda-Sabogal, Alex |
| author_facet |
Castañeda-Sabogal, Alex Rivera-Ramírez, Paola Espinoza-Rivera, Saúl León-Figueroa, Darwin A. Moreno-Ramos, Emilly Barboza, Joshuan J. |
| author_role |
author |
| author2 |
Rivera-Ramírez, Paola Espinoza-Rivera, Saúl León-Figueroa, Darwin A. Moreno-Ramos, Emilly Barboza, Joshuan J. |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Modelos predictivos COVID-19 Unidad de cuidados intensivos Predicción Revisión sistemática Forecasting COVID-19 Intensive care unit Prediction Systematic review |
| topic |
Modelos predictivos COVID-19 Unidad de cuidados intensivos Predicción Revisión sistemática Forecasting COVID-19 Intensive care unit Prediction Systematic review |
| description |
Background: It is essential to identify the epidemiological and clinical characteristics of patients infected with COVID-19 associated with disease progression leading to ICU admission. The objective was to systematically review the models or scores for predicting admission to the intensive care unit (ICU) available to date for patients with COVID-19. Methods: The study is a systematic review. PubMed, Scopus, Web of Science, Ovid-Medline, and Embase were searched until July 13, 2022. We included studies that have developed and validated a model or scoring system to predict ICU admission in patients with COVID-19. The primary outcome was ICU admission. Risk of bias assessment was performed using the PROBAST tool which is based on four domains: participants, predictors, outcome and analysis. Results: Two studies were included for data extraction and critical appraisal. Predictive models of ICU admission and performance were obtained as primary outcomes. Common predictors for both models were associated with pulmonary compromise (respiratory rate or pulmonary ventilation) and systemic inflammation (C-reactive protein). Conclusions: It is feasible to determine predictor variables for ICU admission in patients hospitalized for COVID-19. However, the studies do not determine a clearly defined score and present a high risk of bias, so it is not feasible to recommend the application of any of these models in clinical practice. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-09-25 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402 10.35434/rcmhnaaa.2022.15Supl. 1.1402 |
| url |
https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402 |
| identifier_str_mv |
10.35434/rcmhnaaa.2022.15Supl. 1.1402 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402/695 https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402/628 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo |
| publisher.none.fl_str_mv |
Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo |
| dc.source.none.fl_str_mv |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 15 No. Supl. 1 (2022): 1° Supplement | Health Technology Assessment and Decision Making; e1402 Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 15 Núm. Supl. 1 (2022): Suplemento 1 | Evaluación de Tecnologías en Salud y Toma de decisiones; e1402 2227-4731 2225-5109 10.35434/rcmhnaaa.2022.15Supl. 1 reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo instname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo instacron:HNAAA |
| instname_str |
Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| instacron_str |
HNAAA |
| institution |
HNAAA |
| reponame_str |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| collection |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1847069001076703232 |
| spelling |
Predictive models of intensive care unit admission in patients with covid-19: systematic reviewModelos predictivos de ingreso a la unidad de cuidados intensivos en pacientes con covid-19: revisión sistemáticaCastañeda-Sabogal, Alex Rivera-Ramírez, Paola Espinoza-Rivera, Saúl León-Figueroa, Darwin A. Moreno-Ramos, Emilly Barboza, Joshuan J.Modelos predictivosCOVID-19Unidad de cuidados intensivosPredicciónRevisión sistemáticaForecastingCOVID-19Intensive care unitPredictionSystematic reviewBackground: It is essential to identify the epidemiological and clinical characteristics of patients infected with COVID-19 associated with disease progression leading to ICU admission. The objective was to systematically review the models or scores for predicting admission to the intensive care unit (ICU) available to date for patients with COVID-19. Methods: The study is a systematic review. PubMed, Scopus, Web of Science, Ovid-Medline, and Embase were searched until July 13, 2022. We included studies that have developed and validated a model or scoring system to predict ICU admission in patients with COVID-19. The primary outcome was ICU admission. Risk of bias assessment was performed using the PROBAST tool which is based on four domains: participants, predictors, outcome and analysis. Results: Two studies were included for data extraction and critical appraisal. Predictive models of ICU admission and performance were obtained as primary outcomes. Common predictors for both models were associated with pulmonary compromise (respiratory rate or pulmonary ventilation) and systemic inflammation (C-reactive protein). Conclusions: It is feasible to determine predictor variables for ICU admission in patients hospitalized for COVID-19. However, the studies do not determine a clearly defined score and present a high risk of bias, so it is not feasible to recommend the application of any of these models in clinical practice.Introducción: Es fundamental identificar las características epidemiológicas y clínicas de los pacientes infectados con COVID-19, asociadas a una progresión de la enfermedad que conlleva al ingreso a UCI. El objetivo fue revisar sistemáticamente los modelos o scores de predicción de ingreso a la unidad de cuidados intensivos (UCI) disponibles a la fecha para pacientes con COVID-19. Métodos: El estudio es una revisión sistemática. Se hicieron búsquedas en PubMed, Scopus, Web of Science, Ovid-Medline, y Embase hasta el 13 de Julio del 2022. Se incluyeron estudios que hayan desarrollado y validado un modelo o sistema de puntuación para predecir el ingreso a la UCI en pacientes con COVID-19. El desenlace primario fue el ingreso a la UCI. La evaluación del riesgo de sesgo se realizó utilizando la herramienta PROBAST que se basa en cuatro dominios: participantes, predictores, desenlace y análisis. Resultados: Se incluyeron dos estudios para la extracción de datos y la evaluación crítica. Se obtuvo como desenlaces primarios los modelos predictivos de ingreso a la UCI y su rendimiento. Los predictores comunes para ambos modelos se asociaron con el compromiso pulmonar (frecuencia respiratoria o ventilación pulmonar) y la inflamación sistémica (proteína C reactiva). Conclusiones: Es factible determinar variables predictoras de ingreso a UCI en los pacientes hospitalizados por COVID-19. Sin embargo; los estudios no determinan un score claramente definido y presentan un alto riesgo de sesgo, por lo que no es factible recomendar la aplicación de alguno de estos modelos en la práctica clínica.Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo2022-09-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/140210.35434/rcmhnaaa.2022.15Supl. 1.1402Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 15 No. Supl. 1 (2022): 1° Supplement | Health Technology Assessment and Decision Making; e1402Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 15 Núm. Supl. 1 (2022): Suplemento 1 | Evaluación de Tecnologías en Salud y Toma de decisiones; e14022227-47312225-510910.35434/rcmhnaaa.2022.15Supl. 1reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstacron:HNAAAspahttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402/695https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402/628Derechos de autor 2022 Alex Castañeda-Sabogal, Paola Rivera-Ramírez, Saúl Espinoza-Rivera, Darwin A. León-Figueroa, Emilly Moreno-Ramos, Joshuan J. Barbozahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/14022025-03-12T13:40:59Z |
| score |
13.085615 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).