Predictive models of intensive care unit admission in patients with covid-19: systematic review

Descripción del Articulo

Background: It is essential to identify the epidemiological and clinical characteristics of patients infected with COVID-19 associated with disease progression leading to ICU admission. The objective was to systematically review the models or scores for predicting admission to the intensive care uni...

Descripción completa

Detalles Bibliográficos
Autores: Castañeda-Sabogal, Alex, Rivera-Ramírez, Paola, Espinoza-Rivera, Saúl, León-Figueroa, Darwin A., Moreno-Ramos, Emilly, Barboza, Joshuan J.
Formato: artículo
Fecha de Publicación:2022
Institución:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
Repositorio:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
Lenguaje:español
OAI Identifier:oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/1402
Enlace del recurso:https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402
Nivel de acceso:acceso abierto
Materia:Modelos predictivos
COVID-19
Unidad de cuidados intensivos
Predicción
Revisión sistemática
Forecasting
Intensive care unit
Prediction
Systematic review
id REVCMH_1f693c914f31489bad05b78cda423038
oai_identifier_str oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/1402
network_acronym_str REVCMH
network_name_str Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
repository_id_str
dc.title.none.fl_str_mv Predictive models of intensive care unit admission in patients with covid-19: systematic review
Modelos predictivos de ingreso a la unidad de cuidados intensivos en pacientes con covid-19: revisión sistemática
title Predictive models of intensive care unit admission in patients with covid-19: systematic review
spellingShingle Predictive models of intensive care unit admission in patients with covid-19: systematic review
Castañeda-Sabogal, Alex
Modelos predictivos
COVID-19
Unidad de cuidados intensivos
Predicción
Revisión sistemática
Forecasting
COVID-19
Intensive care unit
Prediction
Systematic review
title_short Predictive models of intensive care unit admission in patients with covid-19: systematic review
title_full Predictive models of intensive care unit admission in patients with covid-19: systematic review
title_fullStr Predictive models of intensive care unit admission in patients with covid-19: systematic review
title_full_unstemmed Predictive models of intensive care unit admission in patients with covid-19: systematic review
title_sort Predictive models of intensive care unit admission in patients with covid-19: systematic review
dc.creator.none.fl_str_mv Castañeda-Sabogal, Alex
Rivera-Ramírez, Paola
Espinoza-Rivera, Saúl
León-Figueroa, Darwin A.
Moreno-Ramos, Emilly
Barboza, Joshuan J.
author Castañeda-Sabogal, Alex
author_facet Castañeda-Sabogal, Alex
Rivera-Ramírez, Paola
Espinoza-Rivera, Saúl
León-Figueroa, Darwin A.
Moreno-Ramos, Emilly
Barboza, Joshuan J.
author_role author
author2 Rivera-Ramírez, Paola
Espinoza-Rivera, Saúl
León-Figueroa, Darwin A.
Moreno-Ramos, Emilly
Barboza, Joshuan J.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Modelos predictivos
COVID-19
Unidad de cuidados intensivos
Predicción
Revisión sistemática
Forecasting
COVID-19
Intensive care unit
Prediction
Systematic review
topic Modelos predictivos
COVID-19
Unidad de cuidados intensivos
Predicción
Revisión sistemática
Forecasting
COVID-19
Intensive care unit
Prediction
Systematic review
description Background: It is essential to identify the epidemiological and clinical characteristics of patients infected with COVID-19 associated with disease progression leading to ICU admission. The objective was to systematically review the models or scores for predicting admission to the intensive care unit (ICU) available to date for patients with COVID-19. Methods: The study is a systematic review. PubMed, Scopus, Web of Science, Ovid-Medline, and Embase were searched until July 13, 2022. We included studies that have developed and validated a model or scoring system to predict ICU admission in patients with COVID-19. The primary outcome was ICU admission. Risk of bias assessment was performed using the PROBAST tool which is based on four domains: participants, predictors, outcome and analysis. Results: Two studies were included for data extraction and critical appraisal. Predictive models of ICU admission and performance were obtained as primary outcomes. Common predictors for both models were associated with pulmonary compromise (respiratory rate or pulmonary ventilation) and systemic inflammation (C-reactive protein). Conclusions: It is feasible to determine predictor variables for ICU admission in patients hospitalized for COVID-19. However, the studies do not determine a clearly defined score and present a high risk of bias, so it is not feasible to recommend the application of any of these models in clinical practice.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402
10.35434/rcmhnaaa.2022.15Supl. 1.1402
url https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402
identifier_str_mv 10.35434/rcmhnaaa.2022.15Supl. 1.1402
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402/695
https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402/628
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo
publisher.none.fl_str_mv Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo
dc.source.none.fl_str_mv Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 15 No. Supl. 1 (2022): 1° Supplement | Health Technology Assessment and Decision Making; e1402
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 15 Núm. Supl. 1 (2022): Suplemento 1 | Evaluación de Tecnologías en Salud y Toma de decisiones; e1402
2227-4731
2225-5109
10.35434/rcmhnaaa.2022.15Supl. 1
reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instacron:HNAAA
instname_str Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instacron_str HNAAA
institution HNAAA
reponame_str Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
collection Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847069001076703232
spelling Predictive models of intensive care unit admission in patients with covid-19: systematic reviewModelos predictivos de ingreso a la unidad de cuidados intensivos en pacientes con covid-19: revisión sistemáticaCastañeda-Sabogal, Alex Rivera-Ramírez, Paola Espinoza-Rivera, Saúl León-Figueroa, Darwin A. Moreno-Ramos, Emilly Barboza, Joshuan J.Modelos predictivosCOVID-19Unidad de cuidados intensivosPredicciónRevisión sistemáticaForecastingCOVID-19Intensive care unitPredictionSystematic reviewBackground: It is essential to identify the epidemiological and clinical characteristics of patients infected with COVID-19 associated with disease progression leading to ICU admission. The objective was to systematically review the models or scores for predicting admission to the intensive care unit (ICU) available to date for patients with COVID-19. Methods: The study is a systematic review. PubMed, Scopus, Web of Science, Ovid-Medline, and Embase were searched until July 13, 2022. We included studies that have developed and validated a model or scoring system to predict ICU admission in patients with COVID-19. The primary outcome was ICU admission. Risk of bias assessment was performed using the PROBAST tool which is based on four domains: participants, predictors, outcome and analysis. Results: Two studies were included for data extraction and critical appraisal. Predictive models of ICU admission and performance were obtained as primary outcomes. Common predictors for both models were associated with pulmonary compromise (respiratory rate or pulmonary ventilation) and systemic inflammation (C-reactive protein). Conclusions: It is feasible to determine predictor variables for ICU admission in patients hospitalized for COVID-19. However, the studies do not determine a clearly defined score and present a high risk of bias, so it is not feasible to recommend the application of any of these models in clinical practice.Introducción: Es fundamental identificar las características epidemiológicas y clínicas de los pacientes infectados con COVID-19, asociadas a una progresión de la enfermedad que conlleva al ingreso a UCI. El objetivo fue revisar sistemáticamente los modelos o scores de predicción de ingreso a la unidad de cuidados intensivos (UCI) disponibles a la fecha para pacientes con COVID-19. Métodos: El estudio es una revisión sistemática. Se hicieron búsquedas en PubMed, Scopus, Web of Science, Ovid-Medline, y Embase hasta el 13 de Julio del 2022. Se incluyeron estudios que hayan desarrollado y validado un modelo o sistema de puntuación para predecir el ingreso a la UCI en pacientes con COVID-19. El desenlace primario fue el ingreso a la UCI. La evaluación del riesgo de sesgo se realizó utilizando la herramienta PROBAST que se basa en cuatro dominios: participantes, predictores, desenlace y análisis. Resultados: Se incluyeron dos estudios para la extracción de datos y la evaluación crítica. Se obtuvo como desenlaces primarios los modelos predictivos de ingreso a la UCI y su rendimiento. Los predictores comunes para ambos modelos se asociaron con el compromiso pulmonar (frecuencia respiratoria o ventilación pulmonar) y la inflamación sistémica (proteína C reactiva). Conclusiones: Es factible determinar variables predictoras de ingreso a UCI en los pacientes hospitalizados por COVID-19. Sin embargo; los estudios no determinan un score claramente definido y presentan un alto riesgo de sesgo, por lo que no es factible recomendar la aplicación de alguno de estos modelos en la práctica clínica.Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo2022-09-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/140210.35434/rcmhnaaa.2022.15Supl. 1.1402Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 15 No. Supl. 1 (2022): 1° Supplement | Health Technology Assessment and Decision Making; e1402Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 15 Núm. Supl. 1 (2022): Suplemento 1 | Evaluación de Tecnologías en Salud y Toma de decisiones; e14022227-47312225-510910.35434/rcmhnaaa.2022.15Supl. 1reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstacron:HNAAAspahttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402/695https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/1402/628Derechos de autor 2022 Alex Castañeda-Sabogal, Paola Rivera-Ramírez, Saúl Espinoza-Rivera, Darwin A. León-Figueroa, Emilly Moreno-Ramos, Joshuan J. Barbozahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/14022025-03-12T13:40:59Z
score 13.085615
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).