Self-Organizing-Maps en el estudio del concreto de alto rendimiento

Descripción del Articulo

The manufacture of this type of concrete is carried out taking into account the selection and characterization of materials to produce a high concrete compressive strength and mix designs suitable for these purposes. The materials used are hydraulic Portland cement Type I, fine and coarse aggregates...

Descripción completa

Detalles Bibliográficos
Autor: Moromi Nakata y Colls., Isabel
Formato: artículo
Fecha de Publicación:2018
Institución:Centro de Preparación para la Ciencia y Tecnología
Repositorio:ECIPERÚ
Lenguaje:español
OAI Identifier:oai:revistas.eciperu.net:article/44
Enlace del recurso:https://revistas.eciperu.net/index.php/ECIPERU/article/view/44
Nivel de acceso:acceso abierto
Materia:Concreto de alta resistencia
microsílice
redes neuronales
base de datos
High-strength concrete
microsilica
neural networks
database
Descripción
Sumario:The manufacture of this type of concrete is carried out taking into account the selection and characterization of materials to produce a high concrete compressive strength and mix designs suitable for these purposes. The materials used are hydraulic Portland cement Type I, fine and coarse aggregates. It follows the design of mixed methods in ACI 211.4R-93. Be added the microsílices, also superplasticizers additives which may reduce demand for water and cement content and can produce concrete with low water-cement ratio, high strength and normal or high workability. On the other hand there is the use of neural networks called Self-Organizing-Maps (RNSOM) that are not supervised by a single layer networks. The objective in this part of the work is to create an enabling RNSOM form groups or clusters of samples from manufacturing variables without involving resistance and tensile strength of the specimens and compare these results with larger groups of probes lower resistance or resistance with time and designs that are optimal.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).