Exportación Completada — 

Inferencia bayesiana aproximada para el modelo multivariado block-NNGP

Descripción del Articulo

The study of birds species is an excellent indicator of biodiversity or productivity. Global warming and changes human land us are considered major threats to biodiversity, affecting the abundance of bird species. In this study we focus on the Mourning Dove and American Robin, the most abundant bird...

Descripción completa

Detalles Bibliográficos
Autor: Gonzales Pizango, Carlos Alberto
Formato: tesis de maestría
Fecha de Publicación:2024
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/29764
Enlace del recurso:http://hdl.handle.net/20.500.12404/29764
Nivel de acceso:acceso embargado
Materia:Geología--Métodos estadísticos
Análisis multivariante--Procesamiento de datos
Procesos de Gauss
Aves--América del Norte
https://purl.org/pe-repo/ocde/ford#1.01.03
Descripción
Sumario:The study of birds species is an excellent indicator of biodiversity or productivity. Global warming and changes human land us are considered major threats to biodiversity, affecting the abundance of bird species. In this study we focus on the Mourning Dove and American Robin, the most abundant birds species in the United States. The abundances of these species can be correlated between them and they would also be similar in nearby locations. Thus we propose to model these data simultaneously through multivariate models that relies on sharing common spatial Gaussian random effect terms. In order to improve the computational efficiency, each spatial Gaussian process is approximated to the block nearest neighbor Gaussian process (block-NNGP). Since the multivariate geostatistical model belongs to the class of Latent Gaussian Models, fast Bayesian inference can be carried out through the Integrated Nested Laplace Approximation (INLA) method. The good performance of the proposed model is shown through simulations and our application to the bird species real data.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).