Modelo espacial bayesiano de Cox log-gaussiano usando SPDE para estimar la ocurrencia de incendios forestales en el Perú

Descripción del Articulo

Los incendios forestales se han venido incrementando en las últimas cuatro décadas a nivel mundial. En el Perú de acuerdo a los datos del INDECI, en los últimos 10 años se evidencia una tendencia creciente. La ocurrencia de estos eventos representa la degradación de la calidad del aire, de la flora...

Descripción completa

Detalles Bibliográficos
Autor: Salcedo Suarez, Omar Ivan
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/26064
Enlace del recurso:http://hdl.handle.net/20.500.12404/26064
Nivel de acceso:acceso abierto
Materia:Incendios forestales--Análisis espacial (Estadística)
Recursos forestales--Conservación--Perú
Procesos puntuales
Procesos de Gauss
https://purl.org/pe-repo/ocde/ford#1.01.03
Descripción
Sumario:Los incendios forestales se han venido incrementando en las últimas cuatro décadas a nivel mundial. En el Perú de acuerdo a los datos del INDECI, en los últimos 10 años se evidencia una tendencia creciente. La ocurrencia de estos eventos representa la degradación de la calidad del aire, de la flora y pone en grave riesgo a muchas personas y zonas agrícolas. Para una adecuada evaluación de uno de los componentes del riesgo generado por estos eventos, se requiere analizar la intensidad de su ocurrencia a través de herramientas flexibles. En este contexto se estudia el patrón puntual de estos eventos, a través del modelo espacial bayesiano de Cox log-gaussiano (LGCP) bajo el enfoque de ecuaciones diferenciales parciales estocásticas (SPDE). Los distintos modelos que se evalúan corresponden a la clase de modelos gaussianos latentes y jerárquicos, lo cual nos permite realizar su estimación bajo inferencia bayesiana empleando la aproximación de Laplace anidada integrada (INLA), en tiempos que posibilitan una respuesta rápida y eficiente ante el riesgo generado por estos eventos.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).