Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images

Descripción del Articulo

Maximizing crop production efficiently and sustainably through plant health monitoring is key for global food security. Monitoring large areas with remote sensing technologies such as unmanned aerial vehicles (UAVs) with sensors deals with time and money issues; however, the usage of advanced sensor...

Descripción completa

Detalles Bibliográficos
Autores: Salazar Reque, Itamar, Arteaga, Daniel, Mendoza, Fabiola, Rojas Meza, María Elena, Soto Jeri, Jonell, Huaman, Samuel, Kemper, Guillermo
Formato: artículo
Fecha de Publicación:2023
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:español
OAI Identifier:oai:null:20.500.12955/2349
Enlace del recurso:https://hdl.handle.net/20.500.12955/2349
https://doi.org/10.1016/j.compag.2023.108246
Nivel de acceso:acceso abierto
Materia:Hass avocado
Aerial RGB images
Vegetation Indices
Nutrient Status Monitoring
Water Status Monitoring
https://purl.org/pe-repo/ocde/ford#4.01.06
Avocados
Aguacate
Persea Americana
Vegetation index
Índice de vegetación
Unmanned aerial vehicles
Vehículos aéreos no tripulados
id INIA_4991ad199a685de10df6dfa6b58ee718
oai_identifier_str oai:null:20.500.12955/2349
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images
title Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images
spellingShingle Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images
Salazar Reque, Itamar
Hass avocado
Aerial RGB images
Vegetation Indices
Nutrient Status Monitoring
Water Status Monitoring
https://purl.org/pe-repo/ocde/ford#4.01.06
Avocados
Aguacate
Persea Americana
Vegetation index
Índice de vegetación
Unmanned aerial vehicles
Vehículos aéreos no tripulados
title_short Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images
title_full Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images
title_fullStr Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images
title_full_unstemmed Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images
title_sort Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images
author Salazar Reque, Itamar
author_facet Salazar Reque, Itamar
Arteaga, Daniel
Mendoza, Fabiola
Rojas Meza, María Elena
Soto Jeri, Jonell
Huaman, Samuel
Kemper, Guillermo
author_role author
author2 Arteaga, Daniel
Mendoza, Fabiola
Rojas Meza, María Elena
Soto Jeri, Jonell
Huaman, Samuel
Kemper, Guillermo
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Salazar Reque, Itamar
Arteaga, Daniel
Mendoza, Fabiola
Rojas Meza, María Elena
Soto Jeri, Jonell
Huaman, Samuel
Kemper, Guillermo
dc.subject.es_PE.fl_str_mv Hass avocado
Aerial RGB images
Vegetation Indices
Nutrient Status Monitoring
Water Status Monitoring
topic Hass avocado
Aerial RGB images
Vegetation Indices
Nutrient Status Monitoring
Water Status Monitoring
https://purl.org/pe-repo/ocde/ford#4.01.06
Avocados
Aguacate
Persea Americana
Vegetation index
Índice de vegetación
Unmanned aerial vehicles
Vehículos aéreos no tripulados
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.06
dc.subject.agrovoc.es_PE.fl_str_mv Avocados
Aguacate
Persea Americana
Vegetation index
Índice de vegetación
Unmanned aerial vehicles
Vehículos aéreos no tripulados
description Maximizing crop production efficiently and sustainably through plant health monitoring is key for global food security. Monitoring large areas with remote sensing technologies such as unmanned aerial vehicles (UAVs) with sensors deals with time and money issues; however, the usage of advanced sensors such as hyperspectral, multispectral and thermal cameras limit their usage among all the stakeholders. In this study we explore different vegetation indices (VIs) extracted from aerial RGB images acquired in different flights to differentiate the nutritional and water statuses of Hass avocado plantations. We used an image processing workflow consisting of image selection through a convolutional neural network (CNN) model, tree crown segmentation, color correction and feature extraction to automate the computation of VIs from RGB images. To compare the performance of VIs in the differentiation of nutritional and water statuses, we proposed a comparison metric called Mean Distance between Vegetation Indices (MDVI), analyzed the evolution of the extracted features, and studied their relationships with gold standard Normalized Difference Vegetation Index (NDVI) measurements. Since the extracted features from each group vary from flight to flight due to multiple factors such as the light intensity of each season and the phenological stage of the plant, the proposed comparison metric leverages the differences between the features extracted from each group, thus reducing these temporal effects. We found that Modified Green Red Vegetation Index (MGRVI) allows a better differentiation of nutritional and water statuses. Furthermore, the correlation coefficients of this VI in the three statuses and NDVI for nitrogen group range between 0.63 and 0.85, indicating a positive strong relationship. The results of this work show that MGRVI has a potential to be used as a correlation variable in studies that only use RGB sensors in order to monitor the nutritional and water status of crops.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-13T20:39:12Z
dc.date.available.none.fl_str_mv 2023-10-13T20:39:12Z
dc.date.issued.fl_str_mv 2023-09-22
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Salazar-Reque, I.; Arteaga, D.; Mendoza, F.; Rojas, M. E.; Soto, J.; Huaman, S.; & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213, 108246. doi: 10.1016/j.compag.2023.108246
dc.identifier.issn.none.fl_str_mv 1872-7107
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2349
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.compag.2023.108246
identifier_str_mv Salazar-Reque, I.; Arteaga, D.; Mendoza, F.; Rojas, M. E.; Soto, J.; Huaman, S.; & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213, 108246. doi: 10.1016/j.compag.2023.108246
1872-7107
url https://hdl.handle.net/20.500.12955/2349
https://doi.org/10.1016/j.compag.2023.108246
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.es_PE.fl_str_mv urn:issn:1872-7107
dc.relation.ispartofseries.es_PE.fl_str_mv Computers and Electronics in Agriculture
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.publisher.country.es_PE.fl_str_mv NL
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/145610ca-c68f-49f9-bb25-1ea3de53d007/download
https://repositorio.inia.gob.pe/bitstreams/d86358fa-4639-41b6-abcf-ddd5a1beab7f/download
https://repositorio.inia.gob.pe/bitstreams/d813f67d-32aa-4832-a8c0-3e48e8ef7333/download
https://repositorio.inia.gob.pe/bitstreams/41de99ce-16f1-493a-8277-d96e51d0845c/download
bitstream.checksum.fl_str_mv 4f4d6796a6271edd8e382289614aaa34
8a4605be74aa9ea9d79846c1fba20a33
96fec8b71390d43634a2eb9cd0320a93
ec8ca14b6d1b97c40d68a05d6e1970b0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331691922391040
spelling Salazar Reque, ItamarArteaga, DanielMendoza, FabiolaRojas Meza, María ElenaSoto Jeri, JonellHuaman, SamuelKemper, Guillermo2023-10-13T20:39:12Z2023-10-13T20:39:12Z2023-09-22Salazar-Reque, I.; Arteaga, D.; Mendoza, F.; Rojas, M. E.; Soto, J.; Huaman, S.; & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213, 108246. doi: 10.1016/j.compag.2023.1082461872-7107https://hdl.handle.net/20.500.12955/2349https://doi.org/10.1016/j.compag.2023.108246Maximizing crop production efficiently and sustainably through plant health monitoring is key for global food security. Monitoring large areas with remote sensing technologies such as unmanned aerial vehicles (UAVs) with sensors deals with time and money issues; however, the usage of advanced sensors such as hyperspectral, multispectral and thermal cameras limit their usage among all the stakeholders. In this study we explore different vegetation indices (VIs) extracted from aerial RGB images acquired in different flights to differentiate the nutritional and water statuses of Hass avocado plantations. We used an image processing workflow consisting of image selection through a convolutional neural network (CNN) model, tree crown segmentation, color correction and feature extraction to automate the computation of VIs from RGB images. To compare the performance of VIs in the differentiation of nutritional and water statuses, we proposed a comparison metric called Mean Distance between Vegetation Indices (MDVI), analyzed the evolution of the extracted features, and studied their relationships with gold standard Normalized Difference Vegetation Index (NDVI) measurements. Since the extracted features from each group vary from flight to flight due to multiple factors such as the light intensity of each season and the phenological stage of the plant, the proposed comparison metric leverages the differences between the features extracted from each group, thus reducing these temporal effects. We found that Modified Green Red Vegetation Index (MGRVI) allows a better differentiation of nutritional and water statuses. Furthermore, the correlation coefficients of this VI in the three statuses and NDVI for nitrogen group range between 0.63 and 0.85, indicating a positive strong relationship. The results of this work show that MGRVI has a potential to be used as a correlation variable in studies that only use RGB sensors in order to monitor the nutritional and water status of crops.application/pdfspaElsevierNLurn:issn:1872-7107Computers and Electronics in Agricultureinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAHass avocadoAerial RGB imagesVegetation IndicesNutrient Status MonitoringWater Status Monitoringhttps://purl.org/pe-repo/ocde/ford#4.01.06AvocadosAguacatePersea AmericanaVegetation indexÍndice de vegetaciónUnmanned aerial vehiclesVehículos aéreos no tripuladosDifferentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB imagesinfo:eu-repo/semantics/articleORIGINALSalazar_et-al_2023_avocado_aerial.pdfSalazar_et-al_2023_avocado_aerial.pdfapplication/pdf6916406https://repositorio.inia.gob.pe/bitstreams/145610ca-c68f-49f9-bb25-1ea3de53d007/download4f4d6796a6271edd8e382289614aaa34MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/d86358fa-4639-41b6-abcf-ddd5a1beab7f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSalazar_et-al_2023_avocado_aerial.pdf.txtSalazar_et-al_2023_avocado_aerial.pdf.txtExtracted texttext/plain56664https://repositorio.inia.gob.pe/bitstreams/d813f67d-32aa-4832-a8c0-3e48e8ef7333/download96fec8b71390d43634a2eb9cd0320a93MD53THUMBNAILSalazar_et-al_2023_avocado_aerial.pdf.jpgSalazar_et-al_2023_avocado_aerial.pdf.jpgGenerated Thumbnailimage/jpeg1643https://repositorio.inia.gob.pe/bitstreams/41de99ce-16f1-493a-8277-d96e51d0845c/downloadec8ca14b6d1b97c40d68a05d6e1970b0MD5420.500.12955/2349oai:repositorio.inia.gob.pe:20.500.12955/23492023-10-13 15:39:13.76https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.915032
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).