Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images
Descripción del Articulo
Maximizing crop production efficiently and sustainably through plant health monitoring is key for global food security. Monitoring large areas with remote sensing technologies such as unmanned aerial vehicles (UAVs) with sensors deals with time and money issues; however, the usage of advanced sensor...
| Autores: | , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:null:20.500.12955/2349 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12955/2349 https://doi.org/10.1016/j.compag.2023.108246 |
| Nivel de acceso: | acceso abierto |
| Materia: | Hass avocado Aerial RGB images Vegetation Indices Nutrient Status Monitoring Water Status Monitoring https://purl.org/pe-repo/ocde/ford#4.01.06 Avocados Aguacate Persea Americana Vegetation index Índice de vegetación Unmanned aerial vehicles Vehículos aéreos no tripulados |
| id |
INIA_4991ad199a685de10df6dfa6b58ee718 |
|---|---|
| oai_identifier_str |
oai:null:20.500.12955/2349 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.es_PE.fl_str_mv |
Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images |
| title |
Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images |
| spellingShingle |
Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images Salazar Reque, Itamar Hass avocado Aerial RGB images Vegetation Indices Nutrient Status Monitoring Water Status Monitoring https://purl.org/pe-repo/ocde/ford#4.01.06 Avocados Aguacate Persea Americana Vegetation index Índice de vegetación Unmanned aerial vehicles Vehículos aéreos no tripulados |
| title_short |
Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images |
| title_full |
Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images |
| title_fullStr |
Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images |
| title_full_unstemmed |
Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images |
| title_sort |
Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images |
| author |
Salazar Reque, Itamar |
| author_facet |
Salazar Reque, Itamar Arteaga, Daniel Mendoza, Fabiola Rojas Meza, María Elena Soto Jeri, Jonell Huaman, Samuel Kemper, Guillermo |
| author_role |
author |
| author2 |
Arteaga, Daniel Mendoza, Fabiola Rojas Meza, María Elena Soto Jeri, Jonell Huaman, Samuel Kemper, Guillermo |
| author2_role |
author author author author author author |
| dc.contributor.author.fl_str_mv |
Salazar Reque, Itamar Arteaga, Daniel Mendoza, Fabiola Rojas Meza, María Elena Soto Jeri, Jonell Huaman, Samuel Kemper, Guillermo |
| dc.subject.es_PE.fl_str_mv |
Hass avocado Aerial RGB images Vegetation Indices Nutrient Status Monitoring Water Status Monitoring |
| topic |
Hass avocado Aerial RGB images Vegetation Indices Nutrient Status Monitoring Water Status Monitoring https://purl.org/pe-repo/ocde/ford#4.01.06 Avocados Aguacate Persea Americana Vegetation index Índice de vegetación Unmanned aerial vehicles Vehículos aéreos no tripulados |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.06 |
| dc.subject.agrovoc.es_PE.fl_str_mv |
Avocados Aguacate Persea Americana Vegetation index Índice de vegetación Unmanned aerial vehicles Vehículos aéreos no tripulados |
| description |
Maximizing crop production efficiently and sustainably through plant health monitoring is key for global food security. Monitoring large areas with remote sensing technologies such as unmanned aerial vehicles (UAVs) with sensors deals with time and money issues; however, the usage of advanced sensors such as hyperspectral, multispectral and thermal cameras limit their usage among all the stakeholders. In this study we explore different vegetation indices (VIs) extracted from aerial RGB images acquired in different flights to differentiate the nutritional and water statuses of Hass avocado plantations. We used an image processing workflow consisting of image selection through a convolutional neural network (CNN) model, tree crown segmentation, color correction and feature extraction to automate the computation of VIs from RGB images. To compare the performance of VIs in the differentiation of nutritional and water statuses, we proposed a comparison metric called Mean Distance between Vegetation Indices (MDVI), analyzed the evolution of the extracted features, and studied their relationships with gold standard Normalized Difference Vegetation Index (NDVI) measurements. Since the extracted features from each group vary from flight to flight due to multiple factors such as the light intensity of each season and the phenological stage of the plant, the proposed comparison metric leverages the differences between the features extracted from each group, thus reducing these temporal effects. We found that Modified Green Red Vegetation Index (MGRVI) allows a better differentiation of nutritional and water statuses. Furthermore, the correlation coefficients of this VI in the three statuses and NDVI for nitrogen group range between 0.63 and 0.85, indicating a positive strong relationship. The results of this work show that MGRVI has a potential to be used as a correlation variable in studies that only use RGB sensors in order to monitor the nutritional and water status of crops. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-10-13T20:39:12Z |
| dc.date.available.none.fl_str_mv |
2023-10-13T20:39:12Z |
| dc.date.issued.fl_str_mv |
2023-09-22 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Salazar-Reque, I.; Arteaga, D.; Mendoza, F.; Rojas, M. E.; Soto, J.; Huaman, S.; & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213, 108246. doi: 10.1016/j.compag.2023.108246 |
| dc.identifier.issn.none.fl_str_mv |
1872-7107 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2349 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.compag.2023.108246 |
| identifier_str_mv |
Salazar-Reque, I.; Arteaga, D.; Mendoza, F.; Rojas, M. E.; Soto, J.; Huaman, S.; & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213, 108246. doi: 10.1016/j.compag.2023.108246 1872-7107 |
| url |
https://hdl.handle.net/20.500.12955/2349 https://doi.org/10.1016/j.compag.2023.108246 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.es_PE.fl_str_mv |
urn:issn:1872-7107 |
| dc.relation.ispartofseries.es_PE.fl_str_mv |
Computers and Electronics in Agriculture |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Elsevier |
| dc.publisher.country.es_PE.fl_str_mv |
NL |
| dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
| dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/145610ca-c68f-49f9-bb25-1ea3de53d007/download https://repositorio.inia.gob.pe/bitstreams/d86358fa-4639-41b6-abcf-ddd5a1beab7f/download https://repositorio.inia.gob.pe/bitstreams/d813f67d-32aa-4832-a8c0-3e48e8ef7333/download https://repositorio.inia.gob.pe/bitstreams/41de99ce-16f1-493a-8277-d96e51d0845c/download |
| bitstream.checksum.fl_str_mv |
4f4d6796a6271edd8e382289614aaa34 8a4605be74aa9ea9d79846c1fba20a33 96fec8b71390d43634a2eb9cd0320a93 ec8ca14b6d1b97c40d68a05d6e1970b0 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1833331691922391040 |
| spelling |
Salazar Reque, ItamarArteaga, DanielMendoza, FabiolaRojas Meza, María ElenaSoto Jeri, JonellHuaman, SamuelKemper, Guillermo2023-10-13T20:39:12Z2023-10-13T20:39:12Z2023-09-22Salazar-Reque, I.; Arteaga, D.; Mendoza, F.; Rojas, M. E.; Soto, J.; Huaman, S.; & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213, 108246. doi: 10.1016/j.compag.2023.1082461872-7107https://hdl.handle.net/20.500.12955/2349https://doi.org/10.1016/j.compag.2023.108246Maximizing crop production efficiently and sustainably through plant health monitoring is key for global food security. Monitoring large areas with remote sensing technologies such as unmanned aerial vehicles (UAVs) with sensors deals with time and money issues; however, the usage of advanced sensors such as hyperspectral, multispectral and thermal cameras limit their usage among all the stakeholders. In this study we explore different vegetation indices (VIs) extracted from aerial RGB images acquired in different flights to differentiate the nutritional and water statuses of Hass avocado plantations. We used an image processing workflow consisting of image selection through a convolutional neural network (CNN) model, tree crown segmentation, color correction and feature extraction to automate the computation of VIs from RGB images. To compare the performance of VIs in the differentiation of nutritional and water statuses, we proposed a comparison metric called Mean Distance between Vegetation Indices (MDVI), analyzed the evolution of the extracted features, and studied their relationships with gold standard Normalized Difference Vegetation Index (NDVI) measurements. Since the extracted features from each group vary from flight to flight due to multiple factors such as the light intensity of each season and the phenological stage of the plant, the proposed comparison metric leverages the differences between the features extracted from each group, thus reducing these temporal effects. We found that Modified Green Red Vegetation Index (MGRVI) allows a better differentiation of nutritional and water statuses. Furthermore, the correlation coefficients of this VI in the three statuses and NDVI for nitrogen group range between 0.63 and 0.85, indicating a positive strong relationship. The results of this work show that MGRVI has a potential to be used as a correlation variable in studies that only use RGB sensors in order to monitor the nutritional and water status of crops.application/pdfspaElsevierNLurn:issn:1872-7107Computers and Electronics in Agricultureinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAHass avocadoAerial RGB imagesVegetation IndicesNutrient Status MonitoringWater Status Monitoringhttps://purl.org/pe-repo/ocde/ford#4.01.06AvocadosAguacatePersea AmericanaVegetation indexÍndice de vegetaciónUnmanned aerial vehiclesVehículos aéreos no tripuladosDifferentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB imagesinfo:eu-repo/semantics/articleORIGINALSalazar_et-al_2023_avocado_aerial.pdfSalazar_et-al_2023_avocado_aerial.pdfapplication/pdf6916406https://repositorio.inia.gob.pe/bitstreams/145610ca-c68f-49f9-bb25-1ea3de53d007/download4f4d6796a6271edd8e382289614aaa34MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/d86358fa-4639-41b6-abcf-ddd5a1beab7f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSalazar_et-al_2023_avocado_aerial.pdf.txtSalazar_et-al_2023_avocado_aerial.pdf.txtExtracted texttext/plain56664https://repositorio.inia.gob.pe/bitstreams/d813f67d-32aa-4832-a8c0-3e48e8ef7333/download96fec8b71390d43634a2eb9cd0320a93MD53THUMBNAILSalazar_et-al_2023_avocado_aerial.pdf.jpgSalazar_et-al_2023_avocado_aerial.pdf.jpgGenerated Thumbnailimage/jpeg1643https://repositorio.inia.gob.pe/bitstreams/41de99ce-16f1-493a-8277-d96e51d0845c/downloadec8ca14b6d1b97c40d68a05d6e1970b0MD5420.500.12955/2349oai:repositorio.inia.gob.pe:20.500.12955/23492023-10-13 15:39:13.76https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.915032 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).