Cover and land use changes in the dry forest of Tumbes (Peru) using sentinel-2 and google earth engine data

Descripción del Articulo

Dry forests are home to large amounts of biodiversity, are providers of ecosystem services, and control the advance of deserts. However, globally, these ecosystems are being threatened by various factors such as climate change, deforestation, and land use and land cover (LULC). The objective of this...

Descripción completa

Detalles Bibliográficos
Autores: Barboza Castillo, Elgar, Salazar Coronel, Wilian, Gálvez Paucar, David, Valqui Valqui, Lamberto, Saravia Navarro, David, Gonzales, Jhony, Aldana, Wiliam, Vásquez Pérez, Héctor Vladimir, Arbizu Berrocal, Carlos Irvin
Formato: objeto de conferencia
Fecha de Publicación:2022
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:español
OAI Identifier:oai:null:20.500.12955/2076
Enlace del recurso:https://hdl.handle.net/20.500.12955/2076
https://doi.org/10.3390/IECF2022-13095
Nivel de acceso:acceso abierto
Materia:Forest remote sensing
Random Forest (RF)
Temporal series
Biodiversity
https://purl.org/pe-repo/ocde/ford#4.04.00
forest biodiversity
biodiversity
Descripción
Sumario:Dry forests are home to large amounts of biodiversity, are providers of ecosystem services, and control the advance of deserts. However, globally, these ecosystems are being threatened by various factors such as climate change, deforestation, and land use and land cover (LULC). The objective of this study was to identify the dynamics of LULC changes and the factors associated with the transformations of the dry forest in the Tumbes region (Peru) using Google Earth Engine (GEE). For this, the annual collection of Sentinel 2 (S2) satellite images of 2017 and 2021 was analyzed. Six types of LULC were identified, namely urban area (AU), agricultural land (AL), land without or with little vegetation (LW), water body (WB), dense dry forest (DDF), and open dry forest (ODF). Subsequently, we applied the Random Forest (RF) method for the classification. LULC maps reported accuracies greater than 89%. In turn, the rates of DDF and ODF between 2017 and 2021 remained unchanged at around 82%. Likewise, the largest net change occurred in the areas of WB, AL, and UA, at 51, 22, and 21%, respectively. Meanwhile, forest cover reported a loss of 4% (165.09 km2 ) of the total area in the analyzed period (2017–2021). The application of GEE allowed for an evaluation of the changes in forest cover and land use in the dry forest, and from this, it provided important information for the sustainable management of this ecosystem
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).