Ionospheric echoes detection in digital ionograms using convolutional neural networks

Descripción del Articulo

An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the ech...

Descripción completa

Detalles Bibliográficos
Autor: De la Jara, César
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/4747
Enlace del recurso:http://hdl.handle.net/20.500.12816/4747
Nivel de acceso:acceso abierto
Materia:Neural networks
Ionosphere
Data transmission systems
http://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_7b906a991712844b125fedd0f60d8f54
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/4747
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.es_ES.fl_str_mv Ionospheric echoes detection in digital ionograms using convolutional neural networks
title Ionospheric echoes detection in digital ionograms using convolutional neural networks
spellingShingle Ionospheric echoes detection in digital ionograms using convolutional neural networks
De la Jara, César
Neural networks
Ionosphere
Data transmission systems
http://purl.org/pe-repo/ocde/ford#1.05.01
title_short Ionospheric echoes detection in digital ionograms using convolutional neural networks
title_full Ionospheric echoes detection in digital ionograms using convolutional neural networks
title_fullStr Ionospheric echoes detection in digital ionograms using convolutional neural networks
title_full_unstemmed Ionospheric echoes detection in digital ionograms using convolutional neural networks
title_sort Ionospheric echoes detection in digital ionograms using convolutional neural networks
author De la Jara, César
author_facet De la Jara, César
author_role author
dc.contributor.advisor.fl_str_mv Olivares Poggi, César Augusto
dc.contributor.author.fl_str_mv De la Jara, César
dc.subject.es_ES.fl_str_mv Neural networks
Ionosphere
Data transmission systems
topic Neural networks
Ionosphere
Data transmission systems
http://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.01
description An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise of different nature, that must be removed in order to extract useful information. In the present work, we propose to use a convolutional neural network model to improve the quality of the information obtained from digital ionograms, compared to that using image processing and machine learning techniques, in the generation of electronic density profiles. A data set of more than 900,000 ionograms from 5 ionospheric observation stations is available to use.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-01-30T13:33:17Z
dc.date.available.none.fl_str_mv 2020-01-30T13:33:17Z
dc.date.issued.fl_str_mv 2019
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.citation.es_ES.fl_str_mv De la Jara, C. A. (2019).==$Ionospheric echoes detection in digital ionograms using convolutional neural networks$==(Trabajo de investigación para optar el grado de magíster en Ingeniería Informática con mención en Ciencias de la Computación). Pontificia Universidad Católica del Perú, Lima, Perú.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/4747
identifier_str_mv De la Jara, C. A. (2019).==$Ionospheric echoes detection in digital ionograms using convolutional neural networks$==(Trabajo de investigación para optar el grado de magíster en Ingeniería Informática con mención en Ciencias de la Computación). Pontificia Universidad Católica del Perú, Lima, Perú.
url http://hdl.handle.net/20.500.12816/4747
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licences/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licences/by/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/ed65da18-7df2-431b-b484-8bf4e56ab353/download
https://repositorio.igp.gob.pe/bitstreams/8ecfd687-00e6-4e8d-badd-ef9160e05758/download
https://repositorio.igp.gob.pe/bitstreams/df7c631a-0d45-4878-8904-2dc195bade0e/download
https://repositorio.igp.gob.pe/bitstreams/feb33b8b-a27d-44ad-a0a5-3bcaa5da4b9b/download
bitstream.checksum.fl_str_mv fc2202a13d85407740ae4423c2b8852a
8a4605be74aa9ea9d79846c1fba20a33
9d48a781d1584e1408027ddcf91dc442
2dce4c004cc06699769b8f0ecdb60e13
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico del Peru
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1842618607261974528
spelling Olivares Poggi, César AugustoDe la Jara, César2020-01-30T13:33:17Z2020-01-30T13:33:17Z2019De la Jara, C. A. (2019).==$Ionospheric echoes detection in digital ionograms using convolutional neural networks$==(Trabajo de investigación para optar el grado de magíster en Ingeniería Informática con mención en Ciencias de la Computación). Pontificia Universidad Católica del Perú, Lima, Perú.http://hdl.handle.net/20.500.12816/4747An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise of different nature, that must be removed in order to extract useful information. In the present work, we propose to use a convolutional neural network model to improve the quality of the information obtained from digital ionograms, compared to that using image processing and machine learning techniques, in the generation of electronic density profiles. A data set of more than 900,000 ionograms from 5 ionospheric observation stations is available to use.Trabajo de investigaciónapplication/pdfengPontificia Universidad Católica del Perúinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licences/by/4.0/Neural networksIonosphereData transmission systemshttp://purl.org/pe-repo/ocde/ford#1.05.01Ionospheric echoes detection in digital ionograms using convolutional neural networksinfo:eu-repo/semantics/masterThesisreponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPMagíster en Ingeniería Informática con mención en Ciencias de la ComputaciónPontificia Universidad Católica del Perú. Escuela de PosgradoMaestríaIngeniería InformáticaORIGINALDelaJara-2019.pdfDelaJara-2019.pdfapplication/pdf7405626https://repositorio.igp.gob.pe/bitstreams/ed65da18-7df2-431b-b484-8bf4e56ab353/downloadfc2202a13d85407740ae4423c2b8852aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/8ecfd687-00e6-4e8d-badd-ef9160e05758/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTDelaJara-2019.pdf.txtDelaJara-2019.pdf.txtExtracted texttext/plain23028https://repositorio.igp.gob.pe/bitstreams/df7c631a-0d45-4878-8904-2dc195bade0e/download9d48a781d1584e1408027ddcf91dc442MD53THUMBNAILDelaJara-2019.pdf.jpgDelaJara-2019.pdf.jpgIM Thumbnailimage/jpeg45688https://repositorio.igp.gob.pe/bitstreams/feb33b8b-a27d-44ad-a0a5-3bcaa5da4b9b/download2dce4c004cc06699769b8f0ecdb60e13MD5420.500.12816/4747oai:repositorio.igp.gob.pe:20.500.12816/47472020-12-18 18:49:29.351https://creativecommons.org/licences/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico del Perudspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.977153
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).