Ionospheric echo detection in digital ionograms using convolutional neural networks

Descripción del Articulo

An ionogram is a graph of the time that a vertically transmitted wave takes to return to the earth as a function of frequency. Time is typically represented as virtual height, which is the time divided by the speed of light. The ionogram is shaped by making a trace of this height against the frequen...

Descripción completa

Detalles Bibliográficos
Autores: De la Jara, César, Olivares, C.
Formato: artículo
Fecha de Publicación:2021
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/5122
Enlace del recurso:http://hdl.handle.net/20.500.12816/5122
https://doi.org/10.1029/2020RS007258
Nivel de acceso:acceso abierto
Materia:Ionograms
Automatic scaling
Ionosphere profiles
Deep learning
https://purl.org/pe-repo/ocde/ford#1.05.01
Descripción
Sumario:An ionogram is a graph of the time that a vertically transmitted wave takes to return to the earth as a function of frequency. Time is typically represented as virtual height, which is the time divided by the speed of light. The ionogram is shaped by making a trace of this height against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise and interference of different nature that must be removed in order to extract useful information. In the present work, we propose a method based on convolutional neural networks to extract ionospheric echoes from digital ionograms. Extraction using the CNN model is compared with extraction using machine learning techniques. From the extracted traces, ionospheric parameters can be determined and electron density profile can be derived.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).