Personal bankruptcy prediction using decision tree model

Descripción del Articulo

Purpose – Personal bankruptcy is on the rise in Malaysia. The Insolvency Department of Malaysia reported that personal bankruptcy has increased since 2007 and the total accumulated personal bankruptcy cases stood at 131282 in 2014. This is indeed an alarming Issue because the increasing number of pe...

Descripción completa

Detalles Bibliográficos
Autores: Syed Nor, Sharifah Heryati, Ismail, Shafinar, Yap, Bee Wah
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/1909
Enlace del recurso:https://revistas.esan.edu.pe/index.php/jefas/article/view/88
https://hdl.handle.net/20.500.12640/1909
https://doi.org/10.1108/JEFAS-08-2018-0076
Nivel de acceso:acceso abierto
Materia:Data mining
Credit scoring
Decision tree model
Personal bankruptcy
Random undersampling
Quiebra personal
Minería de datos
Árbol de decisiones
Puntuación de crédito
Submuestreo aleatorio
https://purl.org/pe-repo/ocde/ford#5.02.04
id ESAN_138a4bd0a66dbcfa31f8dd607a0d3b76
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/1909
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
dc.title.en_EN.fl_str_mv Personal bankruptcy prediction using decision tree model
title Personal bankruptcy prediction using decision tree model
spellingShingle Personal bankruptcy prediction using decision tree model
Syed Nor, Sharifah Heryati
Data mining
Credit scoring
Decision tree model
Personal bankruptcy
Random undersampling
Quiebra personal
Minería de datos
Árbol de decisiones
Puntuación de crédito
Submuestreo aleatorio
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short Personal bankruptcy prediction using decision tree model
title_full Personal bankruptcy prediction using decision tree model
title_fullStr Personal bankruptcy prediction using decision tree model
title_full_unstemmed Personal bankruptcy prediction using decision tree model
title_sort Personal bankruptcy prediction using decision tree model
author Syed Nor, Sharifah Heryati
author_facet Syed Nor, Sharifah Heryati
Ismail, Shafinar
Yap, Bee Wah
author_role author
author2 Ismail, Shafinar
Yap, Bee Wah
author2_role author
author
dc.contributor.author.fl_str_mv Syed Nor, Sharifah Heryati
Ismail, Shafinar
Yap, Bee Wah
dc.subject.en_EN.fl_str_mv Data mining
Credit scoring
Decision tree model
Personal bankruptcy
Random undersampling
topic Data mining
Credit scoring
Decision tree model
Personal bankruptcy
Random undersampling
Quiebra personal
Minería de datos
Árbol de decisiones
Puntuación de crédito
Submuestreo aleatorio
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.es_ES.fl_str_mv Quiebra personal
Minería de datos
Árbol de decisiones
Puntuación de crédito
Submuestreo aleatorio
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description Purpose – Personal bankruptcy is on the rise in Malaysia. The Insolvency Department of Malaysia reported that personal bankruptcy has increased since 2007 and the total accumulated personal bankruptcy cases stood at 131282 in 2014. This is indeed an alarming Issue because the increasing number of personal bankruptcy cases will have a negative impact on the Malaysian economy as well as on the society. From the aspect of individual’s personal economy bankruptcy minimizes their chances of securing a job. Apart from that their account will be frozen lost control on their assets and properties andnot allowed to start any business nor be a part of any company’s management. Bankrupts also will be denied from any loan application restricted from travelling overseas and cannot act as a guarantor. This paper aims to investigate this problem by developing the personal bankruptcy prediction model using thedecision tree technique. Design/methodology/approach – In this paper bankrupt is defined as terminated members who failed to settle their loans. The sample comprised of 24546 cases with 17 per cent settled cases and 83 percent terminated cases. The data included a dependent variable i.e. bankruptcy status (Y = 1(bankrupt)Y = 0 (non-bankrupt)) and 12 predictors. SAS Enterprise Miner 14.1 software was used to develop the decision tree model. Findings – Upon completion this study succeeds to come out with the profiles of bankrupts reliable personal bankruptcy scoring model and significant variables of personal bankruptcy. Practical implications – This decision tree model is possible for patent and income generation. Financial institutions are able to use this model for potential borrowers to predict their tendency toward personal bankruptcy. Originality/value – This decision tree model is able to facilitate and assist financial institutions in evaluating and assessing their potential borrower. It helps to identify potential defaulting borrowers. It also can assist financial institutions in implementing the right strategies to avoid defaulting borrowers.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-07-01T04:20:19Z
dc.date.available.none.fl_str_mv 2020-07-01T04:20:19Z
dc.date.issued.fl_str_mv 2019-06-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/88
dc.identifier.citation.none.fl_str_mv Syed Nor, S. H., Ismail, S., & Yap, B. W. (2019). Personal bankruptcy prediction using decision tree model. Journal of Economics, Finance and Administrative Science, 24(47), 157-170. https://doi.org/10.1108/JEFAS-08-2018-0076
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/1909
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1108/JEFAS-08-2018-0076
url https://revistas.esan.edu.pe/index.php/jefas/article/view/88
https://hdl.handle.net/20.500.12640/1909
https://doi.org/10.1108/JEFAS-08-2018-0076
identifier_str_mv Syed Nor, S. H., Ismail, S., & Yap, B. W. (2019). Personal bankruptcy prediction using decision tree model. Journal of Economics, Finance and Administrative Science, 24(47), 157-170. https://doi.org/10.1108/JEFAS-08-2018-0076
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2218-0648
dc.relation.uri.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/88/71
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/7f8a4a42-6248-404f-b957-d6144fb8cce1/download
https://repositorio.esan.edu.pe/bitstreams/5b3f6f5b-3c99-4eed-8203-e3339269ea25/download
https://repositorio.esan.edu.pe/bitstreams/fc7f7c21-edfe-4ece-9df5-62f102f5876d/download
https://repositorio.esan.edu.pe/bitstreams/d695e5e3-75f6-480c-b41a-bf44b427b5e6/download
bitstream.checksum.fl_str_mv 8badc169f7ba84aca1fbdf9663bb310d
1a1e9a20efc132751067103d0a82d737
d87ac83f48ee3cd7ab5001c74ac9c0c9
9ef0745e0841a14b9e190fdfc418c78c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1843261852289597440
spelling Syed Nor, Sharifah HeryatiIsmail, ShafinarYap, Bee Wah2020-07-01T04:20:19Z2020-07-01T04:20:19Z2019-06-01https://revistas.esan.edu.pe/index.php/jefas/article/view/88Syed Nor, S. H., Ismail, S., & Yap, B. W. (2019). Personal bankruptcy prediction using decision tree model. Journal of Economics, Finance and Administrative Science, 24(47), 157-170. https://doi.org/10.1108/JEFAS-08-2018-0076https://hdl.handle.net/20.500.12640/1909https://doi.org/10.1108/JEFAS-08-2018-0076Purpose – Personal bankruptcy is on the rise in Malaysia. The Insolvency Department of Malaysia reported that personal bankruptcy has increased since 2007 and the total accumulated personal bankruptcy cases stood at 131282 in 2014. This is indeed an alarming Issue because the increasing number of personal bankruptcy cases will have a negative impact on the Malaysian economy as well as on the society. From the aspect of individual’s personal economy bankruptcy minimizes their chances of securing a job. Apart from that their account will be frozen lost control on their assets and properties andnot allowed to start any business nor be a part of any company’s management. Bankrupts also will be denied from any loan application restricted from travelling overseas and cannot act as a guarantor. This paper aims to investigate this problem by developing the personal bankruptcy prediction model using thedecision tree technique. Design/methodology/approach – In this paper bankrupt is defined as terminated members who failed to settle their loans. The sample comprised of 24546 cases with 17 per cent settled cases and 83 percent terminated cases. The data included a dependent variable i.e. bankruptcy status (Y = 1(bankrupt)Y = 0 (non-bankrupt)) and 12 predictors. SAS Enterprise Miner 14.1 software was used to develop the decision tree model. Findings – Upon completion this study succeeds to come out with the profiles of bankrupts reliable personal bankruptcy scoring model and significant variables of personal bankruptcy. Practical implications – This decision tree model is possible for patent and income generation. Financial institutions are able to use this model for potential borrowers to predict their tendency toward personal bankruptcy. Originality/value – This decision tree model is able to facilitate and assist financial institutions in evaluating and assessing their potential borrower. It helps to identify potential defaulting borrowers. It also can assist financial institutions in implementing the right strategies to avoid defaulting borrowers.La quiebra personal está en aumento en Malasia. El Departamento de Insolvencia de Malasia informó que la bancarrota personal ha aumentado desde 2007 y el total acumulado de casos de bancarrota personal fue de 131282 en 2014. Este es un problema alarmante porque el Issueero creciente de casos de bancarrota personal tendrá un impacto negativo en la economía de Malasia. así como en la sociedad. Desde el aspecto de la economía personal del individuo la bancarrota minimiza sus posibilidades de obtener un empleo. Aparte de eso su cuenta se congelará perderá el control sobre sus activos y propiedades y no se le permitirá iniciar ningún negocio ni ser parte de la administración de ninguna compañía. Las bancarrotas también serán denegadas de cualquier solicitud de préstamo no podrán viajar al extranjero y no podrán actuar como garantes. Este artículo investiga este problema desarrollando el modelo de predicción de bancarrota personal utilizando la técnica del árbol de decisión. En este documento bancarrota se define como miembros cancelados que no pudieron liquidar sus préstamos. La muestra comprendió 24546 casos con 17% de casos resueltos y 83% casos terminados. Los datos incluyeron una variable dependiente es decir el estado de quiebra (Y = 1 (quiebra) Y = 0 (no quiebra)) y 12 predictores. Una vez finalizado este estudio logró presentar los perfiles de quiebras el modelo confiable de puntaje de bancarrota personal y las variables significativas de la bancarrota personal. Los hallazgos de este estudio son muy útiles y significativos para los bancos los acreedores el Departamento de Insolvencia de Malasia los prestatarios potenciales los miembros de la Agencia de Asesoría de Crédito y Gestión de Deudas y la sociedad en general sobre el conocimiento y el riesgo de quiebra personal. Esta información puede ayudar a hacer una predicción de bancarrota personal y tomar medidas preventivas o correctivas para reducir el Issueero de casos de bancarrota personal. Se espera que este estudio sea una piedra angular para un mayor desarrollo e improvisación especialmente a medida que haya más información y datos disponibles o accesibles.application/pdfInglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/88/71Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Data miningCredit scoringDecision tree modelPersonal bankruptcyRandom undersamplingQuiebra personalMinería de datosÁrbol de decisionesPuntuación de créditoSubmuestreo aleatoriohttps://purl.org/pe-repo/ocde/ford#5.02.04Personal bankruptcy prediction using decision tree modelinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science1704715724Acceso abiertoTHUMBNAIL47.jpg47.jpgimage/jpeg63063https://repositorio.esan.edu.pe/bitstreams/7f8a4a42-6248-404f-b957-d6144fb8cce1/download8badc169f7ba84aca1fbdf9663bb310dMD51falseAnonymousREADJEFAS-47-2019-157-170.pdf.jpgJEFAS-47-2019-157-170.pdf.jpgGenerated Thumbnailimage/jpeg4670https://repositorio.esan.edu.pe/bitstreams/5b3f6f5b-3c99-4eed-8203-e3339269ea25/download1a1e9a20efc132751067103d0a82d737MD54falseAnonymousREADORIGINALJEFAS-47-2019-157-170.pdfTexto completoapplication/pdf735712https://repositorio.esan.edu.pe/bitstreams/fc7f7c21-edfe-4ece-9df5-62f102f5876d/downloadd87ac83f48ee3cd7ab5001c74ac9c0c9MD52trueAnonymousREADTEXTJEFAS-47-2019-157-170.pdf.txtJEFAS-47-2019-157-170.pdf.txtExtracted texttext/plain50578https://repositorio.esan.edu.pe/bitstreams/d695e5e3-75f6-480c-b41a-bf44b427b5e6/download9ef0745e0841a14b9e190fdfc418c78cMD53falseAnonymousREAD20.500.12640/1909oai:repositorio.esan.edu.pe:20.500.12640/19092025-07-09 09:29:49.173https://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).