Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops
Descripción del Articulo
Rayner would like to thank Cienciactiva, an initiative of the National Council of Science, Technology and Technological Innovation-CONCYTEC (Peru) for the financial research support and scholarship.
| Autores: | , , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2017 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/960 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/960 https://doi.org/10.1109/WVC.2017.00009 |
| Nivel de acceso: | acceso abierto |
| Materia: | transfer learning Nutritional Assessment maize leaf analysis deep learning texture analysis convolutional neural networks https://purl.org/pe-repo/ocde/ford#3.02.00 |
| id |
CONC_de1877db210e576dd481e18d4e38531e |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/960 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops |
| title |
Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops |
| spellingShingle |
Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops Condori, RHM transfer learning Nutritional Assessment maize leaf analysis deep learning texture analysis convolutional neural networks https://purl.org/pe-repo/ocde/ford#3.02.00 |
| title_short |
Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops |
| title_full |
Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops |
| title_fullStr |
Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops |
| title_full_unstemmed |
Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops |
| title_sort |
Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops |
| author |
Condori, RHM |
| author_facet |
Condori, RHM Romualdo, LM Bruno, OM Luz, PHD |
| author_role |
author |
| author2 |
Romualdo, LM Bruno, OM Luz, PHD |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Condori, RHM Romualdo, LM Bruno, OM Luz, PHD |
| dc.subject.none.fl_str_mv |
transfer learning |
| topic |
transfer learning Nutritional Assessment maize leaf analysis deep learning texture analysis convolutional neural networks https://purl.org/pe-repo/ocde/ford#3.02.00 |
| dc.subject.es_PE.fl_str_mv |
Nutritional Assessment maize leaf analysis deep learning texture analysis convolutional neural networks |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#3.02.00 |
| description |
Rayner would like to thank Cienciactiva, an initiative of the National Council of Science, Technology and Technological Innovation-CONCYTEC (Peru) for the financial research support and scholarship. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2017 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.isbn.none.fl_str_mv |
978-1-5386-1451-8 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/960 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/WVC.2017.00009 |
| dc.identifier.isi.none.fl_str_mv |
463846300014 |
| identifier_str_mv |
978-1-5386-1451-8 463846300014 |
| url |
https://hdl.handle.net/20.500.12390/960 https://doi.org/10.1109/WVC.2017.00009 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
IEEE Computer Society |
| publisher.none.fl_str_mv |
IEEE Computer Society |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883122661883904 |
| spelling |
Publicationrp00841500rp02621600rp00842500rp02622600Condori, RHMRomualdo, LMBruno, OMLuz, PHD2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017978-1-5386-1451-8https://hdl.handle.net/20.500.12390/960https://doi.org/10.1109/WVC.2017.00009463846300014Rayner would like to thank Cienciactiva, an initiative of the National Council of Science, Technology and Technological Innovation-CONCYTEC (Peru) for the financial research support and scholarship.Every year, efficient maize production is very important to the economy of many countries. Since nutritional deficiencies in maize plants are directly reflected in their grains productivity, early detection is needed to maximize the chances of proper recovery of these plants. Traditional texture methods recently showed interesting results in the identification of nutritional deficiencies. On the other hand, deep learning techniques are increasingly outperforming hand-crafted features on many tasks. In this paper, we propose a simple transfer learning approach from pre-trained cnn models and compare their results with those from traditional texture methods in the task of nitrogen deficiency identification. We perform experiments in a real-world dataset that contains digitalized images of maize leaves at different growth stages and with different levels of nitrogen fertilization. The results show that deep learning based descriptors achieve better success rates than traditional texture methods.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengIEEE Computer Societyinfo:eu-repo/semantics/openAccesstransfer learningNutritional Assessment-1maize leaf analysis-1deep learning-1texture analysis-1convolutional neural networks-1https://purl.org/pe-repo/ocde/ford#3.02.00-1Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize cropsinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/960oai:repositorio.concytec.gob.pe:20.500.12390/9602024-05-30 15:23:20.891http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="6f4b1bbb-257b-438c-b069-50ab2f3763f3"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1109/WVC.2017.00009</DOI> <ISI-Number>463846300014</ISI-Number> <ISBN>978-1-5386-1451-8</ISBN> <Authors> <Author> <DisplayName>Condori, RHM</DisplayName> <Person id="rp00841" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Romualdo, LM</DisplayName> <Person id="rp02621" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bruno, OM</DisplayName> <Person id="rp00842" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Luz, PHD</DisplayName> <Person id="rp02622" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE Computer Society</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>transfer learning</Keyword> <Keyword>Nutritional Assessment</Keyword> <Keyword>maize leaf analysis</Keyword> <Keyword>deep learning</Keyword> <Keyword>texture analysis</Keyword> <Keyword>convolutional neural networks</Keyword> <Abstract>Every year, efficient maize production is very important to the economy of many countries. Since nutritional deficiencies in maize plants are directly reflected in their grains productivity, early detection is needed to maximize the chances of proper recovery of these plants. Traditional texture methods recently showed interesting results in the identification of nutritional deficiencies. On the other hand, deep learning techniques are increasingly outperforming hand-crafted features on many tasks. In this paper, we propose a simple transfer learning approach from pre-trained cnn models and compare their results with those from traditional texture methods in the task of nitrogen deficiency identification. We perform experiments in a real-world dataset that contains digitalized images of maize leaves at different growth stages and with different levels of nitrogen fertilization. The results show that deep learning based descriptors achieve better success rates than traditional texture methods.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.425424 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).