Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning
Descripción del Articulo
Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to g...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2467 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2467 https://doi.org/10.1109/EIRCON51178.2020.9254023 |
Nivel de acceso: | acceso abierto |
Materia: | defect detection adaptive learning Andean potato computer vision Deep learning http://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
CONC_c8d20442e9bbbfb8065b42c7e02bcdee |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2467 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning |
title |
Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning |
spellingShingle |
Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning De La Cruz Casano C. defect detection adaptive learning Andean potato computer vision Deep learning http://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning |
title_full |
Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning |
title_fullStr |
Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning |
title_full_unstemmed |
Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning |
title_sort |
Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning |
author |
De La Cruz Casano C. |
author_facet |
De La Cruz Casano C. Catano Sanchez M. Rojas Chavez F. Vicente Ramos W. |
author_role |
author |
author2 |
Catano Sanchez M. Rojas Chavez F. Vicente Ramos W. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
De La Cruz Casano C. Catano Sanchez M. Rojas Chavez F. Vicente Ramos W. |
dc.subject.none.fl_str_mv |
defect detection |
topic |
defect detection adaptive learning Andean potato computer vision Deep learning http://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.es_PE.fl_str_mv |
adaptive learning Andean potato computer vision Deep learning |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to guarantee the high quality of the product. In the present research, a Convolutional Neural Network is used to detect defects in the Huayro potato surface. This is an Andean potato originally from Peru and is special because it has very marked eyes that can complicate the differentiation from pests that leaves holes in the potato. An adaptive learning was proposed in the work, where the principal idea is to evaluate continuously the learning of the neural network to adapt the training process (in this case the training data) to increment the learning performance. The detection results were around 88.2% of F1 score, providing a good performance of the algorithm. © 2020 IEEE. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2467 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/EIRCON51178.2020.9254023 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85097844507 |
url |
https://hdl.handle.net/20.500.12390/2467 https://doi.org/10.1109/EIRCON51178.2020.9254023 |
identifier_str_mv |
2-s2.0-85097844507 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175429856952320 |
spelling |
Publicationrp06261600rp06258600rp06259600rp06260600De La Cruz Casano C.Catano Sanchez M.Rojas Chavez F.Vicente Ramos W.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2467https://doi.org/10.1109/EIRCON51178.2020.92540232-s2.0-85097844507Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to guarantee the high quality of the product. In the present research, a Convolutional Neural Network is used to detect defects in the Huayro potato surface. This is an Andean potato originally from Peru and is special because it has very marked eyes that can complicate the differentiation from pests that leaves holes in the potato. An adaptive learning was proposed in the work, where the principal idea is to evaluate continuously the learning of the neural network to adapt the training process (in this case the training data) to increment the learning performance. The detection results were around 88.2% of F1 score, providing a good performance of the algorithm. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020info:eu-repo/semantics/openAccessdefect detectionadaptive learning-1Andean potato-1computer vision-1Deep learning-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learninginfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2467oai:repositorio.concytec.gob.pe:20.500.12390/24672024-05-30 16:08:28.908http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="15333970-ef8a-4beb-b2bf-729a65b83365"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/EIRCON51178.2020.9254023</DOI> <SCP-Number>2-s2.0-85097844507</SCP-Number> <Authors> <Author> <DisplayName>De La Cruz Casano C.</DisplayName> <Person id="rp06261" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Catano Sanchez M.</DisplayName> <Person id="rp06258" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rojas Chavez F.</DisplayName> <Person id="rp06259" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vicente Ramos W.</DisplayName> <Person id="rp06260" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>defect detection</Keyword> <Keyword>adaptive learning</Keyword> <Keyword>Andean potato</Keyword> <Keyword>computer vision</Keyword> <Keyword>Deep learning</Keyword> <Abstract>Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to guarantee the high quality of the product. In the present research, a Convolutional Neural Network is used to detect defects in the Huayro potato surface. This is an Andean potato originally from Peru and is special because it has very marked eyes that can complicate the differentiation from pests that leaves holes in the potato. An adaptive learning was proposed in the work, where the principal idea is to evaluate continuously the learning of the neural network to adapt the training process (in this case the training data) to increment the learning performance. The detection results were around 88.2% of F1 score, providing a good performance of the algorithm. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.449131 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).