Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning

Descripción del Articulo

Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to g...

Descripción completa

Detalles Bibliográficos
Autores: De La Cruz Casano C., Catano Sanchez M., Rojas Chavez F., Vicente Ramos W.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2467
Enlace del recurso:https://hdl.handle.net/20.500.12390/2467
https://doi.org/10.1109/EIRCON51178.2020.9254023
Nivel de acceso:acceso abierto
Materia:defect detection
adaptive learning
Andean potato
computer vision
Deep learning
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_c8d20442e9bbbfb8065b42c7e02bcdee
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2467
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning
title Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning
spellingShingle Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning
De La Cruz Casano C.
defect detection
adaptive learning
Andean potato
computer vision
Deep learning
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning
title_full Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning
title_fullStr Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning
title_full_unstemmed Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning
title_sort Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning
author De La Cruz Casano C.
author_facet De La Cruz Casano C.
Catano Sanchez M.
Rojas Chavez F.
Vicente Ramos W.
author_role author
author2 Catano Sanchez M.
Rojas Chavez F.
Vicente Ramos W.
author2_role author
author
author
dc.contributor.author.fl_str_mv De La Cruz Casano C.
Catano Sanchez M.
Rojas Chavez F.
Vicente Ramos W.
dc.subject.none.fl_str_mv defect detection
topic defect detection
adaptive learning
Andean potato
computer vision
Deep learning
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv adaptive learning
Andean potato
computer vision
Deep learning
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to guarantee the high quality of the product. In the present research, a Convolutional Neural Network is used to detect defects in the Huayro potato surface. This is an Andean potato originally from Peru and is special because it has very marked eyes that can complicate the differentiation from pests that leaves holes in the potato. An adaptive learning was proposed in the work, where the principal idea is to evaluate continuously the learning of the neural network to adapt the training process (in this case the training data) to increment the learning performance. The detection results were around 88.2% of F1 score, providing a good performance of the algorithm. © 2020 IEEE.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2467
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/EIRCON51178.2020.9254023
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85097844507
url https://hdl.handle.net/20.500.12390/2467
https://doi.org/10.1109/EIRCON51178.2020.9254023
identifier_str_mv 2-s2.0-85097844507
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175429856952320
spelling Publicationrp06261600rp06258600rp06259600rp06260600De La Cruz Casano C.Catano Sanchez M.Rojas Chavez F.Vicente Ramos W.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2467https://doi.org/10.1109/EIRCON51178.2020.92540232-s2.0-85097844507Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to guarantee the high quality of the product. In the present research, a Convolutional Neural Network is used to detect defects in the Huayro potato surface. This is an Andean potato originally from Peru and is special because it has very marked eyes that can complicate the differentiation from pests that leaves holes in the potato. An adaptive learning was proposed in the work, where the principal idea is to evaluate continuously the learning of the neural network to adapt the training process (in this case the training data) to increment the learning performance. The detection results were around 88.2% of F1 score, providing a good performance of the algorithm. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020info:eu-repo/semantics/openAccessdefect detectionadaptive learning-1Andean potato-1computer vision-1Deep learning-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learninginfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2467oai:repositorio.concytec.gob.pe:20.500.12390/24672024-05-30 16:08:28.908http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="15333970-ef8a-4beb-b2bf-729a65b83365"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/EIRCON51178.2020.9254023</DOI> <SCP-Number>2-s2.0-85097844507</SCP-Number> <Authors> <Author> <DisplayName>De La Cruz Casano C.</DisplayName> <Person id="rp06261" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Catano Sanchez M.</DisplayName> <Person id="rp06258" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rojas Chavez F.</DisplayName> <Person id="rp06259" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vicente Ramos W.</DisplayName> <Person id="rp06260" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>defect detection</Keyword> <Keyword>adaptive learning</Keyword> <Keyword>Andean potato</Keyword> <Keyword>computer vision</Keyword> <Keyword>Deep learning</Keyword> <Abstract>Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to guarantee the high quality of the product. In the present research, a Convolutional Neural Network is used to detect defects in the Huayro potato surface. This is an Andean potato originally from Peru and is special because it has very marked eyes that can complicate the differentiation from pests that leaves holes in the potato. An adaptive learning was proposed in the work, where the principal idea is to evaluate continuously the learning of the neural network to adapt the training process (in this case the training data) to increment the learning performance. The detection results were around 88.2% of F1 score, providing a good performance of the algorithm. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.449131
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).