Exportación Completada — 

Defect Detection on Andean Potatoes using Deep Learning and Adaptive Learning

Descripción del Articulo

Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to g...

Descripción completa

Detalles Bibliográficos
Autores: De La Cruz Casano C., Catano Sanchez M., Rojas Chavez F., Vicente Ramos W.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2467
Enlace del recurso:https://hdl.handle.net/20.500.12390/2467
https://doi.org/10.1109/EIRCON51178.2020.9254023
Nivel de acceso:acceso abierto
Materia:defect detection
adaptive learning
Andean potato
computer vision
Deep learning
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to guarantee the high quality of the product. In the present research, a Convolutional Neural Network is used to detect defects in the Huayro potato surface. This is an Andean potato originally from Peru and is special because it has very marked eyes that can complicate the differentiation from pests that leaves holes in the potato. An adaptive learning was proposed in the work, where the principal idea is to evaluate continuously the learning of the neural network to adapt the training process (in this case the training data) to increment the learning performance. The detection results were around 88.2% of F1 score, providing a good performance of the algorithm. © 2020 IEEE.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).