Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis

Descripción del Articulo

In the last years, innovative techniques like Transfer Learning have impacted strongly in Natural Language Processing, increasing massively the state-of-the-art in several challenging tasks. In particular, the Universal Language Model Fine-Tuning (ULMFiT) algorithm has proven to have an impressive p...

Descripción completa

Detalles Bibliográficos
Autores: Palomino D., Ochoa-Luna J.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2725
Enlace del recurso:https://hdl.handle.net/20.500.12390/2725
https://doi.org/10.1007/978-3-030-33749-0_10
Nivel de acceso:acceso abierto
Materia:Transfer learning
Language Model
Natural Language Processing
Sentiment analysis
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_a4c86d63a9c7f3e3054c393c9c74271d
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2725
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis
title Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis
spellingShingle Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis
Palomino D.
Transfer learning
Language Model
Natural Language Processing
Sentiment analysis
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis
title_full Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis
title_fullStr Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis
title_full_unstemmed Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis
title_sort Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis
author Palomino D.
author_facet Palomino D.
Ochoa-Luna J.
author_role author
author2 Ochoa-Luna J.
author2_role author
dc.contributor.author.fl_str_mv Palomino D.
Ochoa-Luna J.
dc.subject.none.fl_str_mv Transfer learning
topic Transfer learning
Language Model
Natural Language Processing
Sentiment analysis
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Language Model
Natural Language Processing
Sentiment analysis
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description In the last years, innovative techniques like Transfer Learning have impacted strongly in Natural Language Processing, increasing massively the state-of-the-art in several challenging tasks. In particular, the Universal Language Model Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at developing an algorithm for Spanish Sentiment Analysis of short texts that is comparable to the state-of-the-art. In order to do so, we have adapted the ULMFiT algorithm to this setting. Experimental results on benchmark datasets (InterTASS 2017 and InterTASS 2018) show how this simple transfer learning approach performs well when compared to fancy deep learning techniques. © Springer Nature Switzerland AG 2019.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2725
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-33749-0_10
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85075647488
url https://hdl.handle.net/20.500.12390/2725
https://doi.org/10.1007/978-3-030-33749-0_10
identifier_str_mv 2-s2.0-85075647488
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883074633957376
spelling Publicationrp06670600rp06669600Palomino D.Ochoa-Luna J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2725https://doi.org/10.1007/978-3-030-33749-0_102-s2.0-85075647488In the last years, innovative techniques like Transfer Learning have impacted strongly in Natural Language Processing, increasing massively the state-of-the-art in several challenging tasks. In particular, the Universal Language Model Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at developing an algorithm for Spanish Sentiment Analysis of short texts that is comparable to the state-of-the-art. In order to do so, we have adapted the ULMFiT algorithm to this setting. Experimental results on benchmark datasets (InterTASS 2017 and InterTASS 2018) show how this simple transfer learning approach performs well when compared to fancy deep learning techniques. © Springer Nature Switzerland AG 2019.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringerLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccessTransfer learningLanguage Model-1Natural Language Processing-1Sentiment analysis-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysisinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2725oai:repositorio.concytec.gob.pe:20.500.12390/27252024-05-30 16:10:51.208http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="346e5912-5838-48ce-a9ab-5e44a43a66fe"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis</Title> <PublishedIn> <Publication> <Title>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-33749-0_10</DOI> <SCP-Number>2-s2.0-85075647488</SCP-Number> <Authors> <Author> <DisplayName>Palomino D.</DisplayName> <Person id="rp06670" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ochoa-Luna J.</DisplayName> <Person id="rp06669" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Transfer learning</Keyword> <Keyword>Language Model</Keyword> <Keyword>Natural Language Processing</Keyword> <Keyword>Sentiment analysis</Keyword> <Abstract>In the last years, innovative techniques like Transfer Learning have impacted strongly in Natural Language Processing, increasing massively the state-of-the-art in several challenging tasks. In particular, the Universal Language Model Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at developing an algorithm for Spanish Sentiment Analysis of short texts that is comparable to the state-of-the-art. In order to do so, we have adapted the ULMFiT algorithm to this setting. Experimental results on benchmark datasets (InterTASS 2017 and InterTASS 2018) show how this simple transfer learning approach performs well when compared to fancy deep learning techniques. © Springer Nature Switzerland AG 2019.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.386405
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).