Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis
Descripción del Articulo
In the last years, innovative techniques like Transfer Learning have impacted strongly in Natural Language Processing, increasing massively the state-of-the-art in several challenging tasks. In particular, the Universal Language Model Fine-Tuning (ULMFiT) algorithm has proven to have an impressive p...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2019 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2725 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2725 https://doi.org/10.1007/978-3-030-33749-0_10 |
| Nivel de acceso: | acceso abierto |
| Materia: | Transfer learning Language Model Natural Language Processing Sentiment analysis http://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
CONC_a4c86d63a9c7f3e3054c393c9c74271d |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2725 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis |
| title |
Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis |
| spellingShingle |
Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis Palomino D. Transfer learning Language Model Natural Language Processing Sentiment analysis http://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis |
| title_full |
Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis |
| title_fullStr |
Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis |
| title_full_unstemmed |
Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis |
| title_sort |
Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis |
| author |
Palomino D. |
| author_facet |
Palomino D. Ochoa-Luna J. |
| author_role |
author |
| author2 |
Ochoa-Luna J. |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Palomino D. Ochoa-Luna J. |
| dc.subject.none.fl_str_mv |
Transfer learning |
| topic |
Transfer learning Language Model Natural Language Processing Sentiment analysis http://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.es_PE.fl_str_mv |
Language Model Natural Language Processing Sentiment analysis |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
In the last years, innovative techniques like Transfer Learning have impacted strongly in Natural Language Processing, increasing massively the state-of-the-art in several challenging tasks. In particular, the Universal Language Model Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at developing an algorithm for Spanish Sentiment Analysis of short texts that is comparable to the state-of-the-art. In order to do so, we have adapted the ULMFiT algorithm to this setting. Experimental results on benchmark datasets (InterTASS 2017 and InterTASS 2018) show how this simple transfer learning approach performs well when compared to fancy deep learning techniques. © Springer Nature Switzerland AG 2019. |
| publishDate |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2019 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2725 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-33749-0_10 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85075647488 |
| url |
https://hdl.handle.net/20.500.12390/2725 https://doi.org/10.1007/978-3-030-33749-0_10 |
| identifier_str_mv |
2-s2.0-85075647488 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883074633957376 |
| spelling |
Publicationrp06670600rp06669600Palomino D.Ochoa-Luna J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2725https://doi.org/10.1007/978-3-030-33749-0_102-s2.0-85075647488In the last years, innovative techniques like Transfer Learning have impacted strongly in Natural Language Processing, increasing massively the state-of-the-art in several challenging tasks. In particular, the Universal Language Model Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at developing an algorithm for Spanish Sentiment Analysis of short texts that is comparable to the state-of-the-art. In order to do so, we have adapted the ULMFiT algorithm to this setting. Experimental results on benchmark datasets (InterTASS 2017 and InterTASS 2018) show how this simple transfer learning approach performs well when compared to fancy deep learning techniques. © Springer Nature Switzerland AG 2019.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringerLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccessTransfer learningLanguage Model-1Natural Language Processing-1Sentiment analysis-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysisinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2725oai:repositorio.concytec.gob.pe:20.500.12390/27252024-05-30 16:10:51.208http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="346e5912-5838-48ce-a9ab-5e44a43a66fe"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Advanced Transfer Learning Approach for Improving Spanish Sentiment Analysis</Title> <PublishedIn> <Publication> <Title>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-33749-0_10</DOI> <SCP-Number>2-s2.0-85075647488</SCP-Number> <Authors> <Author> <DisplayName>Palomino D.</DisplayName> <Person id="rp06670" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ochoa-Luna J.</DisplayName> <Person id="rp06669" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Transfer learning</Keyword> <Keyword>Language Model</Keyword> <Keyword>Natural Language Processing</Keyword> <Keyword>Sentiment analysis</Keyword> <Abstract>In the last years, innovative techniques like Transfer Learning have impacted strongly in Natural Language Processing, increasing massively the state-of-the-art in several challenging tasks. In particular, the Universal Language Model Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at developing an algorithm for Spanish Sentiment Analysis of short texts that is comparable to the state-of-the-art. In order to do so, we have adapted the ULMFiT algorithm to this setting. Experimental results on benchmark datasets (InterTASS 2017 and InterTASS 2018) show how this simple transfer learning approach performs well when compared to fancy deep learning techniques. © Springer Nature Switzerland AG 2019.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.386405 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).