Vertex reconstruction of neutrino interactions using deep learning

Descripción del Articulo

Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detaile...

Descripción completa

Detalles Bibliográficos
Autores: Terwilliger A.M., Perdue G.N., Isele D., Patton R.M., Young S.R.
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/817
Enlace del recurso:https://hdl.handle.net/20.500.12390/817
https://doi.org/10.1109/IJCNN.2017.7966131
Nivel de acceso:acceso abierto
Materia:Vertex reconstruction
Elementary particles
Neutrons
Semantics
Algorithm engineering
Error prones
Learning models
Measurements of
Neutrino interactions
Semantic features
Vertex locations
Deep learning
id CONC_9d2c1aa9a1b823f4139806df2f7da923
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/817
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Vertex reconstruction of neutrino interactions using deep learning
title Vertex reconstruction of neutrino interactions using deep learning
spellingShingle Vertex reconstruction of neutrino interactions using deep learning
Terwilliger A.M.
Vertex reconstruction
Elementary particles
Neutrons
Semantics
Algorithm engineering
Error prones
Learning models
Measurements of
Neutrino interactions
Semantic features
Vertex locations
Deep learning
title_short Vertex reconstruction of neutrino interactions using deep learning
title_full Vertex reconstruction of neutrino interactions using deep learning
title_fullStr Vertex reconstruction of neutrino interactions using deep learning
title_full_unstemmed Vertex reconstruction of neutrino interactions using deep learning
title_sort Vertex reconstruction of neutrino interactions using deep learning
author Terwilliger A.M.
author_facet Terwilliger A.M.
Perdue G.N.
Isele D.
Patton R.M.
Young S.R.
author_role author
author2 Perdue G.N.
Isele D.
Patton R.M.
Young S.R.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Terwilliger A.M.
Perdue G.N.
Isele D.
Patton R.M.
Young S.R.
dc.subject.none.fl_str_mv Vertex reconstruction
topic Vertex reconstruction
Elementary particles
Neutrons
Semantics
Algorithm engineering
Error prones
Learning models
Measurements of
Neutrino interactions
Semantic features
Vertex locations
Deep learning
dc.subject.es_PE.fl_str_mv Elementary particles
Neutrons
Semantics
Algorithm engineering
Error prones
Learning models
Measurements of
Neutrino interactions
Semantic features
Vertex locations
Deep learning
description Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detailed understanding of neutrino interactions with a variety of nuclei. Many measurements of interest depend on vertex reconstruction – finding the origin of a neutrino interaction using data from the detector, which can be represented as images. Traditionally, this has been accomplished by utilizing methods that identify the tracks coming from the interaction. However, these methods are not ideal for interactions where an abundance of tracks and cascades occlude the vertex region. Manual algorithm engineering to handle these challenges is complicated and error prone. Deep learning extracts rich, semantic features directly from raw data, making it a promising solution to this problem. In this work, deep learning models are presented that classify the vertex location in regions meaningful to the domain scientists improving their ability to explore more complex interactions.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.isbn.none.fl_str_mv urn:isbn:9781509061815
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/817
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/IJCNN.2017.7966131
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85031031977
identifier_str_mv urn:isbn:9781509061815
2-s2.0-85031031977
url https://hdl.handle.net/20.500.12390/817
https://doi.org/10.1109/IJCNN.2017.7966131
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings of the International Joint Conference on Neural Networks
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883000048746496
spelling Publicationrp02099600rp00806500rp02100600rp02097600rp02098600Terwilliger A.M.Perdue G.N.Isele D.Patton R.M.Young S.R.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017urn:isbn:9781509061815https://hdl.handle.net/20.500.12390/817https://doi.org/10.1109/IJCNN.2017.79661312-s2.0-85031031977Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detailed understanding of neutrino interactions with a variety of nuclei. Many measurements of interest depend on vertex reconstruction – finding the origin of a neutrino interaction using data from the detector, which can be represented as images. Traditionally, this has been accomplished by utilizing methods that identify the tracks coming from the interaction. However, these methods are not ideal for interactions where an abundance of tracks and cascades occlude the vertex region. Manual algorithm engineering to handle these challenges is complicated and error prone. Deep learning extracts rich, semantic features directly from raw data, making it a promising solution to this problem. In this work, deep learning models are presented that classify the vertex location in regions meaningful to the domain scientists improving their ability to explore more complex interactions.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the International Joint Conference on Neural Networksinfo:eu-repo/semantics/openAccessVertex reconstructionElementary particles-1Neutrons-1Semantics-1Algorithm engineering-1Error prones-1Learning models-1Measurements of-1Neutrino interactions-1Semantic features-1Vertex locations-1Deep learning-1Vertex reconstruction of neutrino interactions using deep learninginfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/817oai:repositorio.concytec.gob.pe:20.500.12390/8172025-09-23 14:38:48.304http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="91b4b2e6-c95c-41d6-a3bb-facad875d99a"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Vertex reconstruction of neutrino interactions using deep learning</Title> <PublishedIn> <Publication> <Title>Proceedings of the International Joint Conference on Neural Networks</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1109/IJCNN.2017.7966131</DOI> <SCP-Number>2-s2.0-85031031977</SCP-Number> <ISBN>urn:isbn:9781509061815</ISBN> <Authors> <Author> <DisplayName>Terwilliger A.M.</DisplayName> <Person id="rp02099" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Perdue G.N.</DisplayName> <Person id="rp00806" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Isele D.</DisplayName> <Person id="rp02100" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Patton R.M.</DisplayName> <Person id="rp02097" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Young S.R.</DisplayName> <Person id="rp02098" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Vertex reconstruction</Keyword> <Keyword>Elementary particles</Keyword> <Keyword>Neutrons</Keyword> <Keyword>Semantics</Keyword> <Keyword>Algorithm engineering</Keyword> <Keyword>Error prones</Keyword> <Keyword>Learning models</Keyword> <Keyword>Measurements of</Keyword> <Keyword>Neutrino interactions</Keyword> <Keyword>Semantic features</Keyword> <Keyword>Vertex locations</Keyword> <Keyword>Deep learning</Keyword> <Abstract>Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detailed understanding of neutrino interactions with a variety of nuclei. Many measurements of interest depend on vertex reconstruction – finding the origin of a neutrino interaction using data from the detector, which can be represented as images. Traditionally, this has been accomplished by utilizing methods that identify the tracks coming from the interaction. However, these methods are not ideal for interactions where an abundance of tracks and cascades occlude the vertex region. Manual algorithm engineering to handle these challenges is complicated and error prone. Deep learning extracts rich, semantic features directly from raw data, making it a promising solution to this problem. In this work, deep learning models are presented that classify the vertex location in regions meaningful to the domain scientists improving their ability to explore more complex interactions.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.779025
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).