Vertex reconstruction of neutrino interactions using deep learning

Descripción del Articulo

Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detaile...

Descripción completa

Detalles Bibliográficos
Autores: Terwilliger A.M., Perdue G.N., Isele D., Patton R.M., Young S.R.
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/817
Enlace del recurso:https://hdl.handle.net/20.500.12390/817
https://doi.org/10.1109/IJCNN.2017.7966131
Nivel de acceso:acceso abierto
Materia:Vertex reconstruction
Elementary particles
Neutrons
Semantics
Algorithm engineering
Error prones
Learning models
Measurements of
Neutrino interactions
Semantic features
Vertex locations
Deep learning
Descripción
Sumario:Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detailed understanding of neutrino interactions with a variety of nuclei. Many measurements of interest depend on vertex reconstruction – finding the origin of a neutrino interaction using data from the detector, which can be represented as images. Traditionally, this has been accomplished by utilizing methods that identify the tracks coming from the interaction. However, these methods are not ideal for interactions where an abundance of tracks and cascades occlude the vertex region. Manual algorithm engineering to handle these challenges is complicated and error prone. Deep learning extracts rich, semantic features directly from raw data, making it a promising solution to this problem. In this work, deep learning models are presented that classify the vertex location in regions meaningful to the domain scientists improving their ability to explore more complex interactions.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).