PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020)
Descripción del Articulo
Quantification of the surface water offer is crucial for its management. In Peru, the low spatial density of hydrometric stations makes this task challenging. This work aims to evaluate the hydrological performance of a monthly water balance model in Peru using precipitation and evapotranspiration d...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2343 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2343 https://doi.org/10.3390/w13081048 |
Nivel de acceso: | acceso abierto |
Materia: | Water balance model Fourier Amplitude Test GR2M Peru PISCO product http://purl.org/pe-repo/ocde/ford#1.05.11 |
id |
CONC_7c26ac84ff863e28144dc9a8e8327ef3 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2343 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020) |
title |
PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020) |
spellingShingle |
PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020) Llauca H. Water balance model Fourier Amplitude Test GR2M Peru PISCO product http://purl.org/pe-repo/ocde/ford#1.05.11 |
title_short |
PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020) |
title_full |
PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020) |
title_fullStr |
PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020) |
title_full_unstemmed |
PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020) |
title_sort |
PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020) |
author |
Llauca H. |
author_facet |
Llauca H. Lavado-Casimiro W. Montesinos C. Santini W. Rau P. |
author_role |
author |
author2 |
Lavado-Casimiro W. Montesinos C. Santini W. Rau P. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Llauca H. Lavado-Casimiro W. Montesinos C. Santini W. Rau P. |
dc.subject.none.fl_str_mv |
Water balance model |
topic |
Water balance model Fourier Amplitude Test GR2M Peru PISCO product http://purl.org/pe-repo/ocde/ford#1.05.11 |
dc.subject.es_PE.fl_str_mv |
Fourier Amplitude Test GR2M Peru PISCO product |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.11 |
description |
Quantification of the surface water offer is crucial for its management. In Peru, the low spatial density of hydrometric stations makes this task challenging. This work aims to evaluate the hydrological performance of a monthly water balance model in Peru using precipitation and evapotranspiration data from the high-resolution meteorological PISCO dataset, which has been developed by the National Service of Meteorology and Hydrology of Peru (SENAMHI). A regional-ization approach based on Fourier Amplitude Sensitivity Testing (FAST) of the rainfall-runoff (RR) and runoff variability (RV) indices defined 14 calibration regions nationwide. Next, the GR2M model was used at a semi-distributed scale in 3594 sub-basins and river streams to simulate monthly discharges from January 1981 to March 2020. Model performance was evaluated using the Kling–Gupta efficiency (KGE), square root transferred Nash–Sutcliffe efficiency (NSEsqrt ), and water balance error (WBE) metrics. The results show a very well representation of monthly discharges for a large portion of Peruvian sub-basins (KGE ? 0.75, NSEsqrt ? 0.65, and ?0.29 < WBE < 0.23). Finally, this study introduces a product of continuous monthly discharge rates in Peru, named PISCO_HyM_GR2M, to understand surface water balance in data-scarce sub-basins. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Llauca, H., Lavado-Casimiro, W., Montesinos, C., Santini, W., & Rau, P. (2021). PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020). Water, 13(8), 1048. https://doi.org/10.3390/w13081048 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2343 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/w13081048 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85104678514 |
identifier_str_mv |
Llauca, H., Lavado-Casimiro, W., Montesinos, C., Santini, W., & Rau, P. (2021). PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020). Water, 13(8), 1048. https://doi.org/10.3390/w13081048 2-s2.0-85104678514 |
url |
https://hdl.handle.net/20.500.12390/2343 https://doi.org/10.3390/w13081048 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Water (Switzerland) |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/4373a1c5-cfc3-46fa-be9b-eadd22e3f73b/download https://repositorio.concytec.gob.pe/bitstreams/5b7fd9dc-7798-4955-b82d-492a22613e0c/download https://repositorio.concytec.gob.pe/bitstreams/03cacf88-fe74-4060-9a56-bf99cacc1903/download |
bitstream.checksum.fl_str_mv |
e27301528b155a3cc85e047713d42d8e 35d15d2add54760486404a7df77b3db2 1338bd85222330d6e48e9c2571365b85 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883043712499712 |
spelling |
Publicationrp05612600rp05614600rp05613600rp05615600rp05616600Llauca H.Lavado-Casimiro W.Montesinos C.Santini W.Rau P.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021Llauca, H., Lavado-Casimiro, W., Montesinos, C., Santini, W., & Rau, P. (2021). PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020). Water, 13(8), 1048. https://doi.org/10.3390/w13081048https://hdl.handle.net/20.500.12390/2343https://doi.org/10.3390/w130810482-s2.0-85104678514Quantification of the surface water offer is crucial for its management. In Peru, the low spatial density of hydrometric stations makes this task challenging. This work aims to evaluate the hydrological performance of a monthly water balance model in Peru using precipitation and evapotranspiration data from the high-resolution meteorological PISCO dataset, which has been developed by the National Service of Meteorology and Hydrology of Peru (SENAMHI). A regional-ization approach based on Fourier Amplitude Sensitivity Testing (FAST) of the rainfall-runoff (RR) and runoff variability (RV) indices defined 14 calibration regions nationwide. Next, the GR2M model was used at a semi-distributed scale in 3594 sub-basins and river streams to simulate monthly discharges from January 1981 to March 2020. Model performance was evaluated using the Kling–Gupta efficiency (KGE), square root transferred Nash–Sutcliffe efficiency (NSEsqrt ), and water balance error (WBE) metrics. The results show a very well representation of monthly discharges for a large portion of Peruvian sub-basins (KGE ? 0.75, NSEsqrt ? 0.65, and ?0.29 < WBE < 0.23). Finally, this study introduces a product of continuous monthly discharge rates in Peru, named PISCO_HyM_GR2M, to understand surface water balance in data-scarce sub-basins. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengMDPI AGWater (Switzerland)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Water balance modelFourier Amplitude Test-1GR2M-1Peru-1PISCO product-1http://purl.org/pe-repo/ocde/ford#1.05.11-1PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020)info:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALPISCO_HyM_GR2M - water-13-01048.pdfPISCO_HyM_GR2M - water-13-01048.pdfapplication/pdf6990156https://repositorio.concytec.gob.pe/bitstreams/4373a1c5-cfc3-46fa-be9b-eadd22e3f73b/downloade27301528b155a3cc85e047713d42d8eMD51TEXTPISCO_HyM_GR2M - water-13-01048.pdf.txtPISCO_HyM_GR2M - water-13-01048.pdf.txtExtracted texttext/plain61146https://repositorio.concytec.gob.pe/bitstreams/5b7fd9dc-7798-4955-b82d-492a22613e0c/download35d15d2add54760486404a7df77b3db2MD52THUMBNAILPISCO_HyM_GR2M - water-13-01048.pdf.jpgPISCO_HyM_GR2M - water-13-01048.pdf.jpgGenerated Thumbnailimage/jpeg5742https://repositorio.concytec.gob.pe/bitstreams/03cacf88-fe74-4060-9a56-bf99cacc1903/download1338bd85222330d6e48e9c2571365b85MD5320.500.12390/2343oai:repositorio.concytec.gob.pe:20.500.12390/23432025-01-19 22:01:06.859https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="e7bab3af-d978-4cb8-95b9-64b6a67b4b4f"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020)</Title> <PublishedIn> <Publication> <Title>Water (Switzerland)</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.3390/w13081048</DOI> <SCP-Number>2-s2.0-85104678514</SCP-Number> <Authors> <Author> <DisplayName>Llauca H.</DisplayName> <Person id="rp05612" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lavado-Casimiro W.</DisplayName> <Person id="rp05614" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Montesinos C.</DisplayName> <Person id="rp05613" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Santini W.</DisplayName> <Person id="rp05615" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rau P.</DisplayName> <Person id="rp05616" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>MDPI AG</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Water balance model</Keyword> <Keyword>Fourier Amplitude Test</Keyword> <Keyword>GR2M</Keyword> <Keyword>Peru</Keyword> <Keyword>PISCO product</Keyword> <Abstract>Quantification of the surface water offer is crucial for its management. In Peru, the low spatial density of hydrometric stations makes this task challenging. This work aims to evaluate the hydrological performance of a monthly water balance model in Peru using precipitation and evapotranspiration data from the high-resolution meteorological PISCO dataset, which has been developed by the National Service of Meteorology and Hydrology of Peru (SENAMHI). A regional-ization approach based on Fourier Amplitude Sensitivity Testing (FAST) of the rainfall-runoff (RR) and runoff variability (RV) indices defined 14 calibration regions nationwide. Next, the GR2M model was used at a semi-distributed scale in 3594 sub-basins and river streams to simulate monthly discharges from January 1981 to March 2020. Model performance was evaluated using the Kling–Gupta efficiency (KGE), square root transferred Nash–Sutcliffe efficiency (NSEsqrt ), and water balance error (WBE) metrics. The results show a very well representation of monthly discharges for a large portion of Peruvian sub-basins (KGE ? 0.75, NSEsqrt ? 0.65, and ?0.29 &lt; WBE &lt; 0.23). Finally, this study introduces a product of continuous monthly discharge rates in Peru, named PISCO_HyM_GR2M, to understand surface water balance in data-scarce sub-basins. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.078757 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).