Deep neural networks based on gating mechanism for open-domain question answering

Descripción del Articulo

I would like to thank in a special way the National Council of Science, Technology and Technological Innovation (CONCYTEC) and the National Fund for Scientific, Technological development and Technological Innovation (FONDECYT-CIENCIACTIVA), which through the Management Agreement N 234-2015-FONDECYT,...

Descripción completa

Detalles Bibliográficos
Autor: Arch Tijera, Drake Christian
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1731
Enlace del recurso:https://hdl.handle.net/20.500.12390/1731
Nivel de acceso:acceso abierto
Materia:Question Answering
Machine Comprehension
Natural Language
Processing
Deep Learning
https://purl.org/pe-repo/ocde/ford#1.02.01
id CONC_78de6ecc75c926f221fbdc91dd3b4a8a
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1731
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Deep neural networks based on gating mechanism for open-domain question answering
title Deep neural networks based on gating mechanism for open-domain question answering
spellingShingle Deep neural networks based on gating mechanism for open-domain question answering
Arch Tijera, Drake Christian
Question Answering
Machine Comprehension
Natural Language
Processing
Processing
Deep Learning
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Deep neural networks based on gating mechanism for open-domain question answering
title_full Deep neural networks based on gating mechanism for open-domain question answering
title_fullStr Deep neural networks based on gating mechanism for open-domain question answering
title_full_unstemmed Deep neural networks based on gating mechanism for open-domain question answering
title_sort Deep neural networks based on gating mechanism for open-domain question answering
author Arch Tijera, Drake Christian
author_facet Arch Tijera, Drake Christian
author_role author
dc.contributor.author.fl_str_mv Arch Tijera, Drake Christian
dc.subject.none.fl_str_mv Question Answering
topic Question Answering
Machine Comprehension
Natural Language
Processing
Processing
Deep Learning
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.es_PE.fl_str_mv Machine Comprehension
Natural Language
Processing
Processing
Deep Learning
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description I would like to thank in a special way the National Council of Science, Technology and Technological Innovation (CONCYTEC) and the National Fund for Scientific, Technological development and Technological Innovation (FONDECYT-CIENCIACTIVA), which through the Management Agreement N 234-2015-FONDECYT, they have allowed the grant and financing of my studies of Master in Computer Science at the Universidad Cat´olica San Pablo (UCSP).
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1731
url https://hdl.handle.net/20.500.12390/1731
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.publisher.none.fl_str_mv Universidad Católica San Pablo
publisher.none.fl_str_mv Universidad Católica San Pablo
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883047063748608
spelling Publicationrp04663600Arch Tijera, Drake Christian2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1731I would like to thank in a special way the National Council of Science, Technology and Technological Innovation (CONCYTEC) and the National Fund for Scientific, Technological development and Technological Innovation (FONDECYT-CIENCIACTIVA), which through the Management Agreement N 234-2015-FONDECYT, they have allowed the grant and financing of my studies of Master in Computer Science at the Universidad Cat´olica San Pablo (UCSP).Nowadays, Question Answering is being addressed from a reading comprehension approach. Usually, Machine Comprehension models are poweredby Deep Learning algorithms. Most related work faces the challenge by improving the Interaction Encoder, proposing several architectures strongly based on attention. In Contrast, few related work has focused on improving the Context Encoder. Thus, our work has explored in depth the Context Encoder. We propose a gating mechanism that controls the ow of information, from the Context Encoder towards Interaction Encoder. This gating mechanism is based on additional information computed previously. Our experiments has shown that our proposed model improved the performance of a competitive baseline model. Our single model reached 78.36% on F1 score and 69.1% on exact match metric, on the Stanford Question Answering benchmark.Consejo Nacional de Ciencia, Tecnología e InnovaciónengUniversidad Católica San Pabloinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Question AnsweringMachine Comprehension-1Natural Language-1Processing-1Processing-1Deep Learning-1https://purl.org/pe-repo/ocde/ford#1.02.01-1Deep neural networks based on gating mechanism for open-domain question answeringinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1731oai:repositorio.concytec.gob.pe:20.500.12390/17312024-05-30 15:39:41.635https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="f1fc8de3-eb11-44fb-a525-1634614d0c31"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Deep neural networks based on gating mechanism for open-domain question answering</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <Authors> <Author> <DisplayName>Arch Tijera, Drake Christian</DisplayName> <Person id="rp04663" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Universidad Católica San Pablo</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Question Answering</Keyword> <Keyword>Machine Comprehension</Keyword> <Keyword>Natural Language</Keyword> <Keyword>Processing</Keyword> <Keyword>Processing</Keyword> <Keyword>Deep Learning</Keyword> <Abstract>Nowadays, Question Answering is being addressed from a reading comprehension approach. Usually, Machine Comprehension models are poweredby Deep Learning algorithms. Most related work faces the challenge by improving the Interaction Encoder, proposing several architectures strongly based on attention. In Contrast, few related work has focused on improving the Context Encoder. Thus, our work has explored in depth the Context Encoder. We propose a gating mechanism that controls the ow of information, from the Context Encoder towards Interaction Encoder. This gating mechanism is based on additional information computed previously. Our experiments has shown that our proposed model improved the performance of a competitive baseline model. Our single model reached 78.36% on F1 score and 69.1% on exact match metric, on the Stanford Question Answering benchmark.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.277489
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).