Deep neural networks based on gating mechanism for open-domain question answering

Descripción del Articulo

Nowadays, Question Answering is being addressed from a reading comprehension approach. Usually, Machine Comprehension models are poweredby Deep Learning algorithms. Most related work faces the challenge by improving the Interaction Encoder, proposing several architectures strongly based on attention...

Descripción completa

Detalles Bibliográficos
Autor: Arch Tijera, Drake Christian
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/15959
Enlace del recurso:https://hdl.handle.net/20.500.12590/15959
Nivel de acceso:acceso abierto
Materia:Machine Comprehension
Question Answering
Natural Language
Processing
Deep Learning
https://purl.org/pe-repo/ocde/ford#1.02.01
Descripción
Sumario:Nowadays, Question Answering is being addressed from a reading comprehension approach. Usually, Machine Comprehension models are poweredby Deep Learning algorithms. Most related work faces the challenge by improving the Interaction Encoder, proposing several architectures strongly based on attention. In Contrast, few related work has focused on improving the Context Encoder. Thus, our work has explored in depth the Context Encoder. We propose a gating mechanism that controls the ow of information, from the Context Encoder towards Interaction Encoder. This gating mechanism is based on additional information computed previously. Our experiments has shown that our proposed model improved the performance of a competitive baseline model. Our single model reached 78.36% on F1 score and 69.1% on exact match metric, on the Stanford Question Answering benchmark.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).