Exportación Completada — 

Multispectral images segmentation using new fuzzy cluster centroid modified

Descripción del Articulo

The presence of outliers, noise, corrupt pieces of data and great quantity of samples in a multispectral image, makes the segmentation analysis work tedious. The fuzzy clustering approach, specially, is susceptible to inhomogeneity of characteristics. Furthermore, many algorithms such us FCM, PFCM,...

Descripción completa

Detalles Bibliográficos
Autores: Mantilla S.C.L., Yari Y.
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/706
Enlace del recurso:https://hdl.handle.net/20.500.12390/706
https://doi.org/10.1109/INTERCON.2017.8079724
Nivel de acceso:acceso abierto
Materia:Spatial relationships
Classification (of information)
Fuzzy clustering
Cluster centroids
Clustering approach
Multispectral images
Probability informations
Satellite images
Segmentation analysis
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:The presence of outliers, noise, corrupt pieces of data and great quantity of samples in a multispectral image, makes the segmentation analysis work tedious. The fuzzy clustering approach, specially, is susceptible to inhomogeneity of characteristics. Furthermore, many algorithms such us FCM, PFCM, FCC, FWCM and modification aim to solve these problems by integrating spacial information. This process is carried through the analysis of the sample's neighborhood. This paper proposes the integration of the sample presence probability into a ”term” like form inside the existent model NFCC. This algorithm presents the basic steps for fuzzy clustering. With a middle variant that integrates the measure between each sample to all the centroids, this replaces the existent term by a new term. This new term integrates the spatial relationship between each sample of the multispectral image into a fitting term. The method is applied to multispectral images. Overall accuracy indicates that the term integrated to NFCC model decrease the overall cluster overlapping.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).