Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado]
Descripción del Articulo
Este trabajo ha sido parcialmente financiado por ”Cienciactiva – CONCYTEC” del gobierno peruano, bajo el número de proyecto 128-2015-FONDECYT y por el ”Programa Nacional de Innovación para la Competiti-vidad y Productividad, Innóvate - Perúc¸on número de contrato FINCyT 363-PNICP-PIAP-2014....
| Autores: | , , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2018 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/933 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/933 https://doi.org/10.18687/LACCEI2018.1.1.413 |
| Nivel de acceso: | acceso abierto |
| Materia: | Smart City Machine learning Open Data https://purl.org/pe-repo/ocde/ford#5.07.04 |
| id |
CONC_14f31086065aa2114864bc54ec8d953b |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/933 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado] |
| title |
Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado] |
| spellingShingle |
Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado] Lovón-Melgarejo J. Smart City Machine learning Open Data https://purl.org/pe-repo/ocde/ford#5.07.04 |
| title_short |
Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado] |
| title_full |
Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado] |
| title_fullStr |
Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado] |
| title_full_unstemmed |
Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado] |
| title_sort |
Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado] |
| author |
Lovón-Melgarejo J. |
| author_facet |
Lovón-Melgarejo J. Tenorio-Trigoso A. Castillo-Cara M. Miranda D. |
| author_role |
author |
| author2 |
Tenorio-Trigoso A. Castillo-Cara M. Miranda D. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Lovón-Melgarejo J. Tenorio-Trigoso A. Castillo-Cara M. Miranda D. |
| dc.subject.none.fl_str_mv |
Smart City |
| topic |
Smart City Machine learning Open Data https://purl.org/pe-repo/ocde/ford#5.07.04 |
| dc.subject.es_PE.fl_str_mv |
Machine learning Open Data |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.07.04 |
| description |
Este trabajo ha sido parcialmente financiado por ”Cienciactiva – CONCYTEC” del gobierno peruano, bajo el número de proyecto 128-2015-FONDECYT y por el ”Programa Nacional de Innovación para la Competiti-vidad y Productividad, Innóvate - Perúc¸on número de contrato FINCyT 363-PNICP-PIAP-2014. |
| publishDate |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2018 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/933 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18687/LACCEI2018.1.1.413 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85057447347 |
| url |
https://hdl.handle.net/20.500.12390/933 https://doi.org/10.18687/LACCEI2018.1.1.413 |
| identifier_str_mv |
2-s2.0-85057447347 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.publisher.none.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
| publisher.none.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883126887645184 |
| spelling |
Publicationrp02469600rp02468600rp01248500rp02214500Lovón-Melgarejo J.Tenorio-Trigoso A.Castillo-Cara M.Miranda D.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/933https://doi.org/10.18687/LACCEI2018.1.1.4132-s2.0-85057447347Este trabajo ha sido parcialmente financiado por ”Cienciactiva – CONCYTEC” del gobierno peruano, bajo el número de proyecto 128-2015-FONDECYT y por el ”Programa Nacional de Innovación para la Competiti-vidad y Productividad, Innóvate - Perúc¸on número de contrato FINCyT 363-PNICP-PIAP-2014.The following work applies Machine Learning algorithms as a tool for a possible solution to the problem of citizen security in a South American city. This application aims to reduce the threat risk to the physical integrity of pedestrians through the geolocation, in real time, using safer places to walk. A database of free disposal for the user is the Open Data San Isidro, district of Lima, Peru, which has been used in the development of this work. This database keeps records of different accidents types (most of the automobile type) occurring in different places of this district, this data will be used to determine safe areas in the route from one place to another, decreasing the probability of suffering an accident. For this work, techniques of non-supervised learning algorithms of Clustering type: k-Means have been used. Likewise, a reduction of dimensions has previously been made using the Principal Component Analysis (PCA) technique.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Smart CityMachine learning-1Open Data-1https://purl.org/pe-repo/ocde/ford#5.07.04-1Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado]info:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/933oai:repositorio.concytec.gob.pe:20.500.12390/9332024-05-30 15:59:56.219https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="78ef9c12-40c5-4422-9934-3988d44f60f8"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado]</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.18687/LACCEI2018.1.1.413</DOI> <SCP-Number>2-s2.0-85057447347</SCP-Number> <Authors> <Author> <DisplayName>Lovón-Melgarejo J.</DisplayName> <Person id="rp02469" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Tenorio-Trigoso A.</DisplayName> <Person id="rp02468" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Castillo-Cara M.</DisplayName> <Person id="rp01248" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Miranda D.</DisplayName> <Person id="rp02214" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Latin American and Caribbean Consortium of Engineering Institutions</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Smart City</Keyword> <Keyword>Machine learning</Keyword> <Keyword>Open Data</Keyword> <Abstract>The following work applies Machine Learning algorithms as a tool for a possible solution to the problem of citizen security in a South American city. This application aims to reduce the threat risk to the physical integrity of pedestrians through the geolocation, in real time, using safer places to walk. A database of free disposal for the user is the Open Data San Isidro, district of Lima, Peru, which has been used in the development of this work. This database keeps records of different accidents types (most of the automobile type) occurring in different places of this district, this data will be used to determine safe areas in the route from one place to another, decreasing the probability of suffering an accident. For this work, techniques of non-supervised learning algorithms of Clustering type: k-Means have been used. Likewise, a reduction of dimensions has previously been made using the Principal Component Analysis (PCA) technique.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.413352 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).