Scalpel Region Detection based on the Location of Color Marks and Edge Detection

Descripción del Articulo

This work proposes an algorithm for scalpel region detection using color segmentation and edge detection. The input images are obtained with a fixed camera that has a line of view perpendicular to the scalpel plane. Three squares of red, green and blue colors were added to the scalpel in order to se...

Descripción completa

Detalles Bibliográficos
Autores: Suarez-Quispe J.C., Ramos O.E.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2492
Enlace del recurso:https://hdl.handle.net/20.500.12390/2492
https://doi.org/10.1109/INTERCON50315.2020.9220207
Nivel de acceso:acceso abierto
Materia:Fuzzy Logic
Color Thresholds
Digital Image Processing
Edge Detection
http://purl.org/pe-repo/ocde/ford#2.02.06
id CONC_0eccfc00519b843802dc3b9f682d9c81
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2492
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Scalpel Region Detection based on the Location of Color Marks and Edge Detection
title Scalpel Region Detection based on the Location of Color Marks and Edge Detection
spellingShingle Scalpel Region Detection based on the Location of Color Marks and Edge Detection
Suarez-Quispe J.C.
Fuzzy Logic
Color Thresholds
Digital Image Processing
Edge Detection
http://purl.org/pe-repo/ocde/ford#2.02.06
title_short Scalpel Region Detection based on the Location of Color Marks and Edge Detection
title_full Scalpel Region Detection based on the Location of Color Marks and Edge Detection
title_fullStr Scalpel Region Detection based on the Location of Color Marks and Edge Detection
title_full_unstemmed Scalpel Region Detection based on the Location of Color Marks and Edge Detection
title_sort Scalpel Region Detection based on the Location of Color Marks and Edge Detection
author Suarez-Quispe J.C.
author_facet Suarez-Quispe J.C.
Ramos O.E.
author_role author
author2 Ramos O.E.
author2_role author
dc.contributor.author.fl_str_mv Suarez-Quispe J.C.
Ramos O.E.
dc.subject.none.fl_str_mv Fuzzy Logic
topic Fuzzy Logic
Color Thresholds
Digital Image Processing
Edge Detection
http://purl.org/pe-repo/ocde/ford#2.02.06
dc.subject.es_PE.fl_str_mv Color Thresholds
Digital Image Processing
Edge Detection
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.06
description This work proposes an algorithm for scalpel region detection using color segmentation and edge detection. The input images are obtained with a fixed camera that has a line of view perpendicular to the scalpel plane. Three squares of red, green and blue colors were added to the scalpel in order to serve as fiducials. For the detection of those marks, the use of two methods was evaluated: One based on the application of thresholds to the color components, and the other based on the use of a fuzzy rule machine. The experimentation shows that both approaches provide similar results. Some morphological operations are then applied in order to detect the scalpel region. The algorithm was successfully tested in several cases, and some examples of the results are presented and analyzed. © 2020 IEEE.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2492
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/INTERCON50315.2020.9220207
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85095427878
url https://hdl.handle.net/20.500.12390/2492
https://doi.org/10.1109/INTERCON50315.2020.9220207
identifier_str_mv 2-s2.0-85095427878
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844882994572034048
spelling Publicationrp06360600rp06285600Suarez-Quispe J.C.Ramos O.E.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2492https://doi.org/10.1109/INTERCON50315.2020.92202072-s2.0-85095427878This work proposes an algorithm for scalpel region detection using color segmentation and edge detection. The input images are obtained with a fixed camera that has a line of view perpendicular to the scalpel plane. Three squares of red, green and blue colors were added to the scalpel in order to serve as fiducials. For the detection of those marks, the use of two methods was evaluated: One based on the application of thresholds to the color components, and the other based on the use of a fuzzy rule machine. The experimentation shows that both approaches provide similar results. Some morphological operations are then applied in order to detect the scalpel region. The algorithm was successfully tested in several cases, and some examples of the results are presented and analyzed. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020info:eu-repo/semantics/openAccessFuzzy LogicColor Thresholds-1Digital Image Processing-1Edge Detection-1http://purl.org/pe-repo/ocde/ford#2.02.06-1Scalpel Region Detection based on the Location of Color Marks and Edge Detectioninfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2492oai:repositorio.concytec.gob.pe:20.500.12390/24922024-05-30 16:08:43.131http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="88950bf6-1afe-4ffc-80ea-3f5d0ce898d8"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Scalpel Region Detection based on the Location of Color Marks and Edge Detection</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/INTERCON50315.2020.9220207</DOI> <SCP-Number>2-s2.0-85095427878</SCP-Number> <Authors> <Author> <DisplayName>Suarez-Quispe J.C.</DisplayName> <Person id="rp06360" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ramos O.E.</DisplayName> <Person id="rp06285" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Fuzzy Logic</Keyword> <Keyword>Color Thresholds</Keyword> <Keyword>Digital Image Processing</Keyword> <Keyword>Edge Detection</Keyword> <Abstract>This work proposes an algorithm for scalpel region detection using color segmentation and edge detection. The input images are obtained with a fixed camera that has a line of view perpendicular to the scalpel plane. Three squares of red, green and blue colors were added to the scalpel in order to serve as fiducials. For the detection of those marks, the use of two methods was evaluated: One based on the application of thresholds to the color components, and the other based on the use of a fuzzy rule machine. The experimentation shows that both approaches provide similar results. Some morphological operations are then applied in order to detect the scalpel region. The algorithm was successfully tested in several cases, and some examples of the results are presented and analyzed. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.402391
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).