Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature
Descripción del Articulo
At present, cervical cancer is still the most complex issue due to the fact that people who suffer from it have a high risk of death. Therefore, it is very important to have an early diagnosis. The present study is a review of the scientific literature, which includes 50 articles from the following...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad Autónoma del Perú |
| Repositorio: | AUTONOMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1754 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13067/1754 https://doi.org/10.1109/EHB52898.2021.9657567 |
| Nivel de acceso: | acceso restringido |
| Materia: | Systematics Asia Machine learning Sensitivity and specificity Predictive models Mathematical models Convolutional neural networks https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
AUTO_c4321b896962c8360f26014bd975d6f2 |
|---|---|
| oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1754 |
| network_acronym_str |
AUTO |
| network_name_str |
AUTONOMA-Institucional |
| repository_id_str |
4774 |
| spelling |
Gutierrez-Espinoza, SandyCabanillas-Carbonell, Michael2022-03-10T17:55:22Z2022-03-10T17:55:22Z2021-12-30Gutierrez-Espinoza, S., & Cabanillas-Carbonell, M. (2021, November). Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature. In 2021 International Conference on e-Health and Bioengineering (EHB) (pp. 1-6). IEEE.978-1-6654-4000-42575-5145https://hdl.handle.net/20.500.13067/17542021 International Conference on e-Health and Bioengineering (EHB)https://doi.org/10.1109/EHB52898.2021.9657567At present, cervical cancer is still the most complex issue due to the fact that people who suffer from it have a high risk of death. Therefore, it is very important to have an early diagnosis. The present study is a review of the scientific literature, which includes 50 articles from the following databases: ProQuest, IEEE Xplore, PubMed, ScienceDirect, Springer, IopScience and Scopus. Thus, showing that the research that has been developed with machine learning facilitates the control, follow-up and monitoring of the disease. The systematic review shows that the model that had the highest accuracy is Convolutional Neural Network and the most used tool is R Studio, these two factors are determinant in cervical cancer, according to the research conducted with 50 articles, where more research on this topic was recorded is the continent of Asia and specifically in the countries of India and China.application/pdfengInstitute of Electrical and Electronics EngineersPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA16reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMASystematicsAsiaMachine learningSensitivity and specificityPredictive modelsMathematical modelsConvolutional neural networkshttps://purl.org/pe-repo/ocde/ford#2.02.04Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literatureinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124563830&doi=10.1109%2fEHB52898.2021.9657567&partnerID=40TEXTMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdf.txtMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdf.txtExtracted texttext/plain606http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/4/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf.txtf4d10aab7fd238bf340ad58af9165512MD54THUMBNAILMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdf.jpgMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdf.jpgGenerated Thumbnailimage/jpeg5775http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/5/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf.jpg75e2d7ed2b23578ae2c48bdc0c6cd69cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdfMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdfVer fuenteapplication/pdf99039http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/3/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf55bd219f5fb50fa753ca018215446219MD5320.500.13067/1754oai:repositorio.autonoma.edu.pe:20.500.13067/17542022-03-11 03:00:21.905Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
| dc.title.es_PE.fl_str_mv |
Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature |
| title |
Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature |
| spellingShingle |
Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature Gutierrez-Espinoza, Sandy Systematics Asia Machine learning Sensitivity and specificity Predictive models Mathematical models Convolutional neural networks https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature |
| title_full |
Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature |
| title_fullStr |
Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature |
| title_full_unstemmed |
Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature |
| title_sort |
Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature |
| author |
Gutierrez-Espinoza, Sandy |
| author_facet |
Gutierrez-Espinoza, Sandy Cabanillas-Carbonell, Michael |
| author_role |
author |
| author2 |
Cabanillas-Carbonell, Michael |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Gutierrez-Espinoza, Sandy Cabanillas-Carbonell, Michael |
| dc.subject.es_PE.fl_str_mv |
Systematics Asia Machine learning Sensitivity and specificity Predictive models Mathematical models Convolutional neural networks |
| topic |
Systematics Asia Machine learning Sensitivity and specificity Predictive models Mathematical models Convolutional neural networks https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
At present, cervical cancer is still the most complex issue due to the fact that people who suffer from it have a high risk of death. Therefore, it is very important to have an early diagnosis. The present study is a review of the scientific literature, which includes 50 articles from the following databases: ProQuest, IEEE Xplore, PubMed, ScienceDirect, Springer, IopScience and Scopus. Thus, showing that the research that has been developed with machine learning facilitates the control, follow-up and monitoring of the disease. The systematic review shows that the model that had the highest accuracy is Convolutional Neural Network and the most used tool is R Studio, these two factors are determinant in cervical cancer, according to the research conducted with 50 articles, where more research on this topic was recorded is the continent of Asia and specifically in the countries of India and China. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2022-03-10T17:55:22Z |
| dc.date.available.none.fl_str_mv |
2022-03-10T17:55:22Z |
| dc.date.issued.fl_str_mv |
2021-12-30 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Gutierrez-Espinoza, S., & Cabanillas-Carbonell, M. (2021, November). Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature. In 2021 International Conference on e-Health and Bioengineering (EHB) (pp. 1-6). IEEE. |
| dc.identifier.isbn.none.fl_str_mv |
978-1-6654-4000-4 |
| dc.identifier.issn.none.fl_str_mv |
2575-5145 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1754 |
| dc.identifier.journal.es_PE.fl_str_mv |
2021 International Conference on e-Health and Bioengineering (EHB) |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/EHB52898.2021.9657567 |
| identifier_str_mv |
Gutierrez-Espinoza, S., & Cabanillas-Carbonell, M. (2021, November). Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature. In 2021 International Conference on e-Health and Bioengineering (EHB) (pp. 1-6). IEEE. 978-1-6654-4000-4 2575-5145 2021 International Conference on e-Health and Bioengineering (EHB) |
| url |
https://hdl.handle.net/20.500.13067/1754 https://doi.org/10.1109/EHB52898.2021.9657567 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124563830&doi=10.1109%2fEHB52898.2021.9657567&partnerID=40 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
restrictedAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
AUTONOMA |
| dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
| instname_str |
Universidad Autónoma del Perú |
| instacron_str |
AUTONOMA |
| institution |
AUTONOMA |
| reponame_str |
AUTONOMA-Institucional |
| collection |
AUTONOMA-Institucional |
| dc.source.beginpage.es_PE.fl_str_mv |
1 |
| dc.source.endpage.es_PE.fl_str_mv |
6 |
| bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/4/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/5/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/3/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf |
| bitstream.checksum.fl_str_mv |
f4d10aab7fd238bf340ad58af9165512 75e2d7ed2b23578ae2c48bdc0c6cd69c 9243398ff393db1861c890baeaeee5f9 55bd219f5fb50fa753ca018215446219 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
| repository.mail.fl_str_mv |
repositorio@autonoma.pe |
| _version_ |
1774399970396340224 |
| score |
13.90587 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).