Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature

Descripción del Articulo

At present, cervical cancer is still the most complex issue due to the fact that people who suffer from it have a high risk of death. Therefore, it is very important to have an early diagnosis. The present study is a review of the scientific literature, which includes 50 articles from the following...

Descripción completa

Detalles Bibliográficos
Autores: Gutierrez-Espinoza, Sandy, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1754
Enlace del recurso:https://hdl.handle.net/20.500.13067/1754
https://doi.org/10.1109/EHB52898.2021.9657567
Nivel de acceso:acceso restringido
Materia:Systematics
Asia
Machine learning
Sensitivity and specificity
Predictive models
Mathematical models
Convolutional neural networks
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_c4321b896962c8360f26014bd975d6f2
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/1754
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Gutierrez-Espinoza, SandyCabanillas-Carbonell, Michael2022-03-10T17:55:22Z2022-03-10T17:55:22Z2021-12-30Gutierrez-Espinoza, S., & Cabanillas-Carbonell, M. (2021, November). Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature. In 2021 International Conference on e-Health and Bioengineering (EHB) (pp. 1-6). IEEE.978-1-6654-4000-42575-5145https://hdl.handle.net/20.500.13067/17542021 International Conference on e-Health and Bioengineering (EHB)https://doi.org/10.1109/EHB52898.2021.9657567At present, cervical cancer is still the most complex issue due to the fact that people who suffer from it have a high risk of death. Therefore, it is very important to have an early diagnosis. The present study is a review of the scientific literature, which includes 50 articles from the following databases: ProQuest, IEEE Xplore, PubMed, ScienceDirect, Springer, IopScience and Scopus. Thus, showing that the research that has been developed with machine learning facilitates the control, follow-up and monitoring of the disease. The systematic review shows that the model that had the highest accuracy is Convolutional Neural Network and the most used tool is R Studio, these two factors are determinant in cervical cancer, according to the research conducted with 50 articles, where more research on this topic was recorded is the continent of Asia and specifically in the countries of India and China.application/pdfengInstitute of Electrical and Electronics EngineersPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA16reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMASystematicsAsiaMachine learningSensitivity and specificityPredictive modelsMathematical modelsConvolutional neural networkshttps://purl.org/pe-repo/ocde/ford#2.02.04Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literatureinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124563830&doi=10.1109%2fEHB52898.2021.9657567&partnerID=40TEXTMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdf.txtMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdf.txtExtracted texttext/plain606http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/4/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf.txtf4d10aab7fd238bf340ad58af9165512MD54THUMBNAILMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdf.jpgMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdf.jpgGenerated Thumbnailimage/jpeg5775http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/5/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf.jpg75e2d7ed2b23578ae2c48bdc0c6cd69cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdfMachine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature.pdfVer fuenteapplication/pdf99039http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/3/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf55bd219f5fb50fa753ca018215446219MD5320.500.13067/1754oai:repositorio.autonoma.edu.pe:20.500.13067/17542022-03-11 03:00:21.905Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe
dc.title.es_PE.fl_str_mv Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature
title Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature
spellingShingle Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature
Gutierrez-Espinoza, Sandy
Systematics
Asia
Machine learning
Sensitivity and specificity
Predictive models
Mathematical models
Convolutional neural networks
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature
title_full Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature
title_fullStr Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature
title_full_unstemmed Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature
title_sort Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature
author Gutierrez-Espinoza, Sandy
author_facet Gutierrez-Espinoza, Sandy
Cabanillas-Carbonell, Michael
author_role author
author2 Cabanillas-Carbonell, Michael
author2_role author
dc.contributor.author.fl_str_mv Gutierrez-Espinoza, Sandy
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Systematics
Asia
Machine learning
Sensitivity and specificity
Predictive models
Mathematical models
Convolutional neural networks
topic Systematics
Asia
Machine learning
Sensitivity and specificity
Predictive models
Mathematical models
Convolutional neural networks
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description At present, cervical cancer is still the most complex issue due to the fact that people who suffer from it have a high risk of death. Therefore, it is very important to have an early diagnosis. The present study is a review of the scientific literature, which includes 50 articles from the following databases: ProQuest, IEEE Xplore, PubMed, ScienceDirect, Springer, IopScience and Scopus. Thus, showing that the research that has been developed with machine learning facilitates the control, follow-up and monitoring of the disease. The systematic review shows that the model that had the highest accuracy is Convolutional Neural Network and the most used tool is R Studio, these two factors are determinant in cervical cancer, according to the research conducted with 50 articles, where more research on this topic was recorded is the continent of Asia and specifically in the countries of India and China.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-03-10T17:55:22Z
dc.date.available.none.fl_str_mv 2022-03-10T17:55:22Z
dc.date.issued.fl_str_mv 2021-12-30
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Gutierrez-Espinoza, S., & Cabanillas-Carbonell, M. (2021, November). Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature. In 2021 International Conference on e-Health and Bioengineering (EHB) (pp. 1-6). IEEE.
dc.identifier.isbn.none.fl_str_mv 978-1-6654-4000-4
dc.identifier.issn.none.fl_str_mv 2575-5145
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/1754
dc.identifier.journal.es_PE.fl_str_mv 2021 International Conference on e-Health and Bioengineering (EHB)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/EHB52898.2021.9657567
identifier_str_mv Gutierrez-Espinoza, S., & Cabanillas-Carbonell, M. (2021, November). Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature. In 2021 International Conference on e-Health and Bioengineering (EHB) (pp. 1-6). IEEE.
978-1-6654-4000-4
2575-5145
2021 International Conference on e-Health and Bioengineering (EHB)
url https://hdl.handle.net/20.500.13067/1754
https://doi.org/10.1109/EHB52898.2021.9657567
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124563830&doi=10.1109%2fEHB52898.2021.9657567&partnerID=40
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Electrical and Electronics Engineers
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 6
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/4/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/5/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1754/3/Machine%20Learning%20Analysis%20for%20Cervical%20Cancer%20Prediction%2c%20a%20Systematic%20Review%20of%20the%20Literature.pdf
bitstream.checksum.fl_str_mv f4d10aab7fd238bf340ad58af9165512
75e2d7ed2b23578ae2c48bdc0c6cd69c
9243398ff393db1861c890baeaeee5f9
55bd219f5fb50fa753ca018215446219
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1774399970396340224
score 13.90587
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).