Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
Descripción del Articulo
Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in child...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Autónoma del Perú |
| Repositorio: | AUTONOMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/2612 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13067/2612 https://doi.org/10.14569/IJACSA.2022.0130963 |
| Nivel de acceso: | acceso abierto |
| Materia: | Neural networks Transfer learning Pneumonia Detection Convolutional https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
AUTO_2709d77120e66e2203ff375b044cab73 |
|---|---|
| oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/2612 |
| network_acronym_str |
AUTO |
| network_name_str |
AUTONOMA-Institucional |
| repository_id_str |
4774 |
| spelling |
Iparraguirre-Villanueva, OrlandoGuevara-Ponce, VictorRoque Paredes, OfeliaSierra-Liñan, FernandoZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-09-21T16:08:11Z2023-09-21T16:08:11Z2022https://hdl.handle.net/20.500.13067/2612(IJACSA) International Journal of Advanced Computer Science and Applicationshttps://doi.org/10.14569/IJACSA.2022.0130963Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the dataset. The results showed that the Inceptionv3 model achieved the best performance with 72.9% accuracy, recall 93.7%, and F1-Score 82%. This indicates that CNN models are suitable for detecting pneumonia with high accuracy.application/pdfeng(IJACSA) International Journal of Advanced Computer Science and Applicationsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Neural networksTransfer learningPneumoniaDetectionConvolutionalhttps://purl.org/pe-repo/ocde/ford#2.02.04Convolutional Neural Networks with Transfer Learning for Pneumonia Detectioninfo:eu-repo/semantics/article139544551reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL94_2022.pdf94_2022.pdfArtículoapplication/pdf874652http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/1/94_2022.pdfc0fa5842c87e7aa5441d94ce2a9959f5MD51TEXT94_2022.pdf.txt94_2022.pdf.txtExtracted texttext/plain36224http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/3/94_2022.pdf.txt77c51fb962fb61dff8efc26cd259c65cMD53THUMBNAIL94_2022.pdf.jpg94_2022.pdf.jpgGenerated Thumbnailimage/jpeg8157http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/4/94_2022.pdf.jpg1014b516e4f2662e3a6aa0ed1c24a52eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/2612oai:repositorio.autonoma.edu.pe:20.500.13067/26122023-09-22 03:00:31.077Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
| dc.title.es_PE.fl_str_mv |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
| title |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
| spellingShingle |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection Iparraguirre-Villanueva, Orlando Neural networks Transfer learning Pneumonia Detection Convolutional https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
| title_full |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
| title_fullStr |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
| title_full_unstemmed |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
| title_sort |
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection |
| author |
Iparraguirre-Villanueva, Orlando |
| author_facet |
Iparraguirre-Villanueva, Orlando Guevara-Ponce, Victor Roque Paredes, Ofelia Sierra-Liñan, Fernando Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
| author_role |
author |
| author2 |
Guevara-Ponce, Victor Roque Paredes, Ofelia Sierra-Liñan, Fernando Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Guevara-Ponce, Victor Roque Paredes, Ofelia Sierra-Liñan, Fernando Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
| dc.subject.es_PE.fl_str_mv |
Neural networks Transfer learning Pneumonia Detection Convolutional |
| topic |
Neural networks Transfer learning Pneumonia Detection Convolutional https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the dataset. The results showed that the Inceptionv3 model achieved the best performance with 72.9% accuracy, recall 93.7%, and F1-Score 82%. This indicates that CNN models are suitable for detecting pneumonia with high accuracy. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2023-09-21T16:08:11Z |
| dc.date.available.none.fl_str_mv |
2023-09-21T16:08:11Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/2612 |
| dc.identifier.journal.es_PE.fl_str_mv |
(IJACSA) International Journal of Advanced Computer Science and Applications |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14569/IJACSA.2022.0130963 |
| url |
https://hdl.handle.net/20.500.13067/2612 https://doi.org/10.14569/IJACSA.2022.0130963 |
| identifier_str_mv |
(IJACSA) International Journal of Advanced Computer Science and Applications |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
(IJACSA) International Journal of Advanced Computer Science and Applications |
| dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
| instname_str |
Universidad Autónoma del Perú |
| instacron_str |
AUTONOMA |
| institution |
AUTONOMA |
| reponame_str |
AUTONOMA-Institucional |
| collection |
AUTONOMA-Institucional |
| dc.source.volume.es_PE.fl_str_mv |
13 |
| dc.source.issue.es_PE.fl_str_mv |
9 |
| dc.source.beginpage.es_PE.fl_str_mv |
544 |
| dc.source.endpage.es_PE.fl_str_mv |
551 |
| bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/1/94_2022.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/3/94_2022.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/4/94_2022.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/2/license.txt |
| bitstream.checksum.fl_str_mv |
c0fa5842c87e7aa5441d94ce2a9959f5 77c51fb962fb61dff8efc26cd259c65c 1014b516e4f2662e3a6aa0ed1c24a52e 9243398ff393db1861c890baeaeee5f9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
| repository.mail.fl_str_mv |
repositorio@autonoma.pe |
| _version_ |
1835915438083538944 |
| score |
13.962692 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).