Convolutional Neural Networks with Transfer Learning for Pneumonia Detection

Descripción del Articulo

Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in child...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Guevara-Ponce, Victor, Roque Paredes, Ofelia, Sierra-Liñan, Fernando, Zapata-Paulini, Joselyn, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2612
Enlace del recurso:https://hdl.handle.net/20.500.13067/2612
https://doi.org/10.14569/IJACSA.2022.0130963
Nivel de acceso:acceso abierto
Materia:Neural networks
Transfer learning
Pneumonia
Detection
Convolutional
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_2709d77120e66e2203ff375b044cab73
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2612
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Iparraguirre-Villanueva, OrlandoGuevara-Ponce, VictorRoque Paredes, OfeliaSierra-Liñan, FernandoZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-09-21T16:08:11Z2023-09-21T16:08:11Z2022https://hdl.handle.net/20.500.13067/2612(IJACSA) International Journal of Advanced Computer Science and Applicationshttps://doi.org/10.14569/IJACSA.2022.0130963Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the dataset. The results showed that the Inceptionv3 model achieved the best performance with 72.9% accuracy, recall 93.7%, and F1-Score 82%. This indicates that CNN models are suitable for detecting pneumonia with high accuracy.application/pdfeng(IJACSA) International Journal of Advanced Computer Science and Applicationsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Neural networksTransfer learningPneumoniaDetectionConvolutionalhttps://purl.org/pe-repo/ocde/ford#2.02.04Convolutional Neural Networks with Transfer Learning for Pneumonia Detectioninfo:eu-repo/semantics/article139544551reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL94_2022.pdf94_2022.pdfArtículoapplication/pdf874652http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/1/94_2022.pdfc0fa5842c87e7aa5441d94ce2a9959f5MD51TEXT94_2022.pdf.txt94_2022.pdf.txtExtracted texttext/plain36224http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/3/94_2022.pdf.txt77c51fb962fb61dff8efc26cd259c65cMD53THUMBNAIL94_2022.pdf.jpg94_2022.pdf.jpgGenerated Thumbnailimage/jpeg8157http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/4/94_2022.pdf.jpg1014b516e4f2662e3a6aa0ed1c24a52eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/2612oai:repositorio.autonoma.edu.pe:20.500.13067/26122023-09-22 03:00:31.077Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
title Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
spellingShingle Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
Iparraguirre-Villanueva, Orlando
Neural networks
Transfer learning
Pneumonia
Detection
Convolutional
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
title_full Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
title_fullStr Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
title_full_unstemmed Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
title_sort Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Roque Paredes, Ofelia
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author_role author
author2 Guevara-Ponce, Victor
Roque Paredes, Ofelia
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Guevara-Ponce, Victor
Roque Paredes, Ofelia
Sierra-Liñan, Fernando
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Neural networks
Transfer learning
Pneumonia
Detection
Convolutional
topic Neural networks
Transfer learning
Pneumonia
Detection
Convolutional
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Pneumonia is a type of acute respiratory infection caused by microbes, and viruses that affect the lungs. Pneumonia is the leading cause of infant mortality in the world, accounting for 81% of deaths in children under five years of age. There are approximately 1.2 million cases of pneumonia in children under five years of age and 180 000 died in 2016. Early detection of pneumonia can help reduce mortality rates. Therefore, this paper presents four convolutional neural network (CNN) models to detect pneumonia from chest X-ray images. CNNs were trained to classify X-ray images into two types: normal and pneumonia, using several convolutional layers. The four models used in this work are pre-trained: VGG16, VGG19, ResNet50, and InceptionV3. The measures that were used for the evaluation of the results are Accuracy, recall, and F1-Score. The models were trained and validated with the dataset. The results showed that the Inceptionv3 model achieved the best performance with 72.9% accuracy, recall 93.7%, and F1-Score 82%. This indicates that CNN models are suitable for detecting pneumonia with high accuracy.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-09-21T16:08:11Z
dc.date.available.none.fl_str_mv 2023-09-21T16:08:11Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2612
dc.identifier.journal.es_PE.fl_str_mv (IJACSA) International Journal of Advanced Computer Science and Applications
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14569/IJACSA.2022.0130963
url https://hdl.handle.net/20.500.13067/2612
https://doi.org/10.14569/IJACSA.2022.0130963
identifier_str_mv (IJACSA) International Journal of Advanced Computer Science and Applications
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv (IJACSA) International Journal of Advanced Computer Science and Applications
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 13
dc.source.issue.es_PE.fl_str_mv 9
dc.source.beginpage.es_PE.fl_str_mv 544
dc.source.endpage.es_PE.fl_str_mv 551
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/1/94_2022.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/3/94_2022.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/4/94_2022.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2612/2/license.txt
bitstream.checksum.fl_str_mv c0fa5842c87e7aa5441d94ce2a9959f5
77c51fb962fb61dff8efc26cd259c65c
1014b516e4f2662e3a6aa0ed1c24a52e
9243398ff393db1861c890baeaeee5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915438083538944
score 13.962692
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).