Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligence

Descripción del Articulo

A bi-factorial experimental design was considered to assess moisture variation of sweet potato-quinoa-kiwicha flakes (SP-Q-K) caused by the changes in the rotational speed and steam pressure of a rotary drum dryer (RDD). As it is a design with discrete variables, there is a limitation in the modelin...

Descripción completa

Detalles Bibliográficos
Autores: Vásquez-Villalobos, Víctor, Hernández-Bracamonte, Orlando, Rojas-Naccha, Julio, Ninaquispe-Zare, Viviano, Rojas-Padilla, Carmen, Vásquez-Angulo, Julia
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad Nacional de Trujillo
Repositorio:Revista UNITRU - Scientia Agropecuaria
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/1736
Enlace del recurso:http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1736
Nivel de acceso:acceso abierto
Materia:Artificial Neural Networks
Fuzzy Logic
Response Surface
Genetic Algorithms
Rotary Drum Drying
id 2411-1783_e36215bb5e7d525d7867aeed56c3af59
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/1736
network_acronym_str 2411-1783
repository_id_str .
network_name_str Revista UNITRU - Scientia Agropecuaria
spelling Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligenceVásquez-Villalobos, VíctorHernández-Bracamonte, OrlandoRojas-Naccha, JulioNinaquispe-Zare, VivianoRojas-Padilla, CarmenVásquez-Angulo, JuliaArtificial Neural NetworksFuzzy LogicResponse SurfaceGenetic AlgorithmsRotary Drum DryingA bi-factorial experimental design was considered to assess moisture variation of sweet potato-quinoa-kiwicha flakes (SP-Q-K) caused by the changes in the rotational speed and steam pressure of a rotary drum dryer (RDD). As it is a design with discrete variables, there is a limitation in the modeling and optimization thus techniques of Artificial Intelligence (AI): Artificial Neural Networks (ANN), Fuzzy Logic (FL) and Genetic Algorithms (GA), were applied, and their prediction ability evaluated. Due to the limitation of data for proper training, the ANN did not allow a correct prediction of the experimental data. Response Surface Methodology (RSM) was employed to obtain the relational equation among the experimental variables, which was used as the objective function with GA, and this allowed moisture optimization. Because of this, it is recommended to integrate RSM and GA into optimization studies. In this research the use of FL among variables, enabled us to get the best prediction adjustment of experimental values (R2 = 0.99), with a mean absolute error of 0.6±0.66 %, setting a pressure value of 5 atm and a speed value of 6 rpm for flakes at 4.99 % humidity.Universidad Nacional de Trujillo2018-03-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/173610.17268/sci.agropecu.2018.01.09Scientia Agropecuaria; Vol. 9 No. 1 (2018): Enero - Marzo; 83-91Scientia Agropecuaria; Vol. 9 Núm. 1 (2018): Enero - Marzo; 83-912306-67412077-9917reponame:Revista UNITRU - Scientia Agropecuariainstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttp://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1736/1707Derechos de autor 2018 Scientia Agropecuariainfo:eu-repo/semantics/openAccess2021-06-01T15:35:25Zmail@mail.com -
dc.title.none.fl_str_mv Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligence
title Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligence
spellingShingle Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligence
Vásquez-Villalobos, Víctor
Artificial Neural Networks
Fuzzy Logic
Response Surface
Genetic Algorithms
Rotary Drum Drying
title_short Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligence
title_full Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligence
title_fullStr Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligence
title_full_unstemmed Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligence
title_sort Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligence
dc.creator.none.fl_str_mv Vásquez-Villalobos, Víctor
Hernández-Bracamonte, Orlando
Rojas-Naccha, Julio
Ninaquispe-Zare, Viviano
Rojas-Padilla, Carmen
Vásquez-Angulo, Julia
author Vásquez-Villalobos, Víctor
author_facet Vásquez-Villalobos, Víctor
Hernández-Bracamonte, Orlando
Rojas-Naccha, Julio
Ninaquispe-Zare, Viviano
Rojas-Padilla, Carmen
Vásquez-Angulo, Julia
author_role author
author2 Hernández-Bracamonte, Orlando
Rojas-Naccha, Julio
Ninaquispe-Zare, Viviano
Rojas-Padilla, Carmen
Vásquez-Angulo, Julia
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Artificial Neural Networks
Fuzzy Logic
Response Surface
Genetic Algorithms
Rotary Drum Drying
topic Artificial Neural Networks
Fuzzy Logic
Response Surface
Genetic Algorithms
Rotary Drum Drying
dc.description.none.fl_txt_mv A bi-factorial experimental design was considered to assess moisture variation of sweet potato-quinoa-kiwicha flakes (SP-Q-K) caused by the changes in the rotational speed and steam pressure of a rotary drum dryer (RDD). As it is a design with discrete variables, there is a limitation in the modeling and optimization thus techniques of Artificial Intelligence (AI): Artificial Neural Networks (ANN), Fuzzy Logic (FL) and Genetic Algorithms (GA), were applied, and their prediction ability evaluated. Due to the limitation of data for proper training, the ANN did not allow a correct prediction of the experimental data. Response Surface Methodology (RSM) was employed to obtain the relational equation among the experimental variables, which was used as the objective function with GA, and this allowed moisture optimization. Because of this, it is recommended to integrate RSM and GA into optimization studies. In this research the use of FL among variables, enabled us to get the best prediction adjustment of experimental values (R2 = 0.99), with a mean absolute error of 0.6±0.66 %, setting a pressure value of 5 atm and a speed value of 6 rpm for flakes at 4.99 % humidity.
description A bi-factorial experimental design was considered to assess moisture variation of sweet potato-quinoa-kiwicha flakes (SP-Q-K) caused by the changes in the rotational speed and steam pressure of a rotary drum dryer (RDD). As it is a design with discrete variables, there is a limitation in the modeling and optimization thus techniques of Artificial Intelligence (AI): Artificial Neural Networks (ANN), Fuzzy Logic (FL) and Genetic Algorithms (GA), were applied, and their prediction ability evaluated. Due to the limitation of data for proper training, the ANN did not allow a correct prediction of the experimental data. Response Surface Methodology (RSM) was employed to obtain the relational equation among the experimental variables, which was used as the objective function with GA, and this allowed moisture optimization. Because of this, it is recommended to integrate RSM and GA into optimization studies. In this research the use of FL among variables, enabled us to get the best prediction adjustment of experimental values (R2 = 0.99), with a mean absolute error of 0.6±0.66 %, setting a pressure value of 5 atm and a speed value of 6 rpm for flakes at 4.99 % humidity.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1736
10.17268/sci.agropecu.2018.01.09
url http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1736
identifier_str_mv 10.17268/sci.agropecu.2018.01.09
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1736/1707
dc.rights.none.fl_str_mv Derechos de autor 2018 Scientia Agropecuaria
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2018 Scientia Agropecuaria
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 9 No. 1 (2018): Enero - Marzo; 83-91
Scientia Agropecuaria; Vol. 9 Núm. 1 (2018): Enero - Marzo; 83-91
2306-6741
2077-9917
reponame:Revista UNITRU - Scientia Agropecuaria
instname:Universidad Nacional de Trujillo
instacron:UNITRU
reponame_str Revista UNITRU - Scientia Agropecuaria
collection Revista UNITRU - Scientia Agropecuaria
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1701379322540982272
score 13.946272
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).