Moisture prediction of sweet potato-quinoa-kiwicha flakes dried by rotary drum dryer using artificial intelligence

Descripción del Articulo

A bi-factorial experimental design was considered to assess moisture variation of sweet potato-quinoa-kiwicha flakes (SP-Q-K) caused by the changes in the rotational speed and steam pressure of a rotary drum dryer (RDD). As it is a design with discrete variables, there is a limitation in the modelin...

Descripción completa

Detalles Bibliográficos
Autores: Vásquez-Villalobos, Víctor, Hernández-Bracamonte, Orlando, Rojas-Naccha, Julio, Ninaquispe-Zare, Viviano, Rojas-Padilla, Carmen, Vásquez-Angulo, Julia
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/1736
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1736
Nivel de acceso:acceso abierto
Materia:Artificial Neural Networks
Fuzzy Logic
Response Surface
Genetic Algorithms
Rotary Drum Drying
Descripción
Sumario:A bi-factorial experimental design was considered to assess moisture variation of sweet potato-quinoa-kiwicha flakes (SP-Q-K) caused by the changes in the rotational speed and steam pressure of a rotary drum dryer (RDD). As it is a design with discrete variables, there is a limitation in the modeling and optimization thus techniques of Artificial Intelligence (AI): Artificial Neural Networks (ANN), Fuzzy Logic (FL) and Genetic Algorithms (GA), were applied, and their prediction ability evaluated. Due to the limitation of data for proper training, the ANN did not allow a correct prediction of the experimental data. Response Surface Methodology (RSM) was employed to obtain the relational equation among the experimental variables, which was used as the objective function with GA, and this allowed moisture optimization. Because of this, it is recommended to integrate RSM and GA into optimization studies. In this research the use of FL among variables, enabled us to get the best prediction adjustment of experimental values (R2 = 0.99), with a mean absolute error of 0.6±0.66 %, setting a pressure value of 5 atm and a speed value of 6 rpm for flakes at 4.99 % humidity.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).