Buscar alternativas:
cayley » bayley (Expander búsqueda)
Mostrando 1 - 9 Resultados de 9 Para Buscar 'cayley', tiempo de consulta: 0.08s Limitar resultados
1
artículo
In this work, we will prove Cayley theorem, using category theory. We will see a different proof than the one seen in a Group Theory course, in this case we will use a famous result in category theory called the Yoneda lemma and then, to relate groups with such lemma we will take advantage of the fact that every group can be viewed as a category. This proof shows that Yoneda lemma is an extensive generalization of Cayley theorem for groups.
2
artículo
In this paper some concepts used in graph theory are introduced, such as directed, undirected, connected, tree, regular or gradient, divergent or Laplacian graphs, and relationships between the diameter of the graph, or the largest second proper value of its adjacency matrix, with respect to the Cheeger constant to identify expander graphs k-regular. With these guidelines defined, some properties are introduced in Cayley graphs, with illustrative examples, and methodologies to identify if the corresponding graph is k-regular or a directed tree. Finally, Cayley expander graphs are related to their diameter or the second largest eigenvalue.
3
artículo
In this paper some concepts used in graph theory are introduced, such as directed, undirected, connected, tree, regular or gradient, divergent or Laplacian graphs, and relationships between the diameter of the graph, or the largest second proper value of its adjacency matrix, with respect to the Cheeger constant to identify expander graphs k-regular. With these guidelines defined, some properties are introduced in Cayley graphs, with illustrative examples, and methodologies to identify if the corresponding graph is k-regular or a directed tree. Finally, Cayley expander graphs are related to their diameter or the second largest eigenvalue.
4
artículo
In this work, we will prove the Cayley-Hamilton theorem using algebraic geometry. We will see a different proof than the one seen in a linear algebra course, in this case we will use the Zariski topology, then we will take advantage of the fact that every square matrix of order n _ n, with entries in a field K, denoted by (aij)n_n can be seen as an element of the affine space of dimension n _ n over the field K and thanks to this, we can resort to algebraic sets and algebraic varieties in order to obtain some results seen in an algebraic geometry and to get a proof of the Cayley-Hamilton theorem.
5
tesis de grado
A classic set A in a universe X can be characterized by its characteristic function_x000D_ A : X ! f0; 1g de ned by_x000D_ A(x) =8>><>>:_x000D_ 1; si x 2 A_x000D_ 0; si x =2 A;_x000D_ where 1 indicates membership and 0 non-membership of x to the set A._x000D_ A fuzzy set A can be characterized by its membership function A : X ! [0; 1],_x000D_ where the number A(x) 2 [0; 1] is called \grade of membership" of the element_x000D_ x to the set A; we note that the concept of fuzzy set generalizes the concept of_x000D_ classical set. The concept of fuzzy set was introduced by Zadeh [13] in 1965. After,_x000D_ Rosenfeld [9] en 1971 beginning the fuzzi cation of algebraic structures introducing_x000D_ the concept of fuzzy group and studying some of its properties. This marked the_x000D_ beginning of the study of fuzzy abstract algebra. Subsequently many researchers_x000D_ worked in this area [7]....
6
informe técnico
En este artículo demostramos la reducibilidad completa de los bimódulos alternativos unitarios sobre el +algebra de Cayley-Dickson split C(F). Además, desmotramos que cada bimódulo alternativo unitario irreducible sobre C(F) es isomorfo al bimódulo regular Reg(C)F)).
7
artículo
This article aims to offer a unifying approach to the basic theory of division algebras by presenting the research of the German-American mathematician Max August Zorn, who classified alternative division algebras. In section 1 the basic theory of real division algebras is developed. Section 2 presents the Cayley-Dickson Process, which consists of constructing an extension algebra from an algebra provided with a conjugation, similar to the construction of complex numbers from real numbers. In Section 3 presents the classical division algebras R (real), C (complex), H (quaternions) and O (octonions) and mentions some of their applications. In section 4 the main theorem is presented, which establishes that the only (except isomorphism) alternative division algebras are: R, C, H and O (Zorn’s theorem). The classification theorems of associative division algebras (Frobenius) and normed ...
8
El objetivo de este trabajo de investigación fue el presente trabajo de investigación denominado la hoja electrónica ha permitido mostrar la línea de tiempo del desarrollo de este concepto, desarrollado a partir de los estudios del profesor Richard Mattessihch. El desarrollo de la hoja de cálculo tiene dos raíces la contabilidad y el desarrollo de la matemática a través del estudio de las matrices: el primero que desarrollo esta parte de la matemática fue el lógico matemático Augustus de Morgan en el año 1846, en sus estudios introdujo el estudio de la estructura de matriz para la contabilidad el cual consideraba el uso de las columnas y filas de tal manera que la primera fila y la primera columna se correspondían conjuntamente y así cada conjunto de filas y columnas conformaban una celda. El segundo matemático en estudiar la estructura de matrices fue Hamilton Cayley cons...
9
tesis de grado
La presente investigación tuvo como objetivo general probar la existencia de la extensión del cuerpo L/K tal que G es el grupo de Galois de L/K con G finito. El estudio fue de tipo Investigación Básica, pues se recopiló toda la información necesaria de los libros y papers, luego se separó en 3 capítulos para así avanzar de forma ordenada hasta concluirlo, finalmente por medio del programa Word se tipeó este trabajo de investigación. Los resultados fueron que dado una extensión de Galois, se le puede asociar un grupo finito: grupo de Galois de dicha extensión y que el “Teorema Fundamental de las Funciones Racionales Simétricas”, el “Teorema de Cayley” y el “Teorema Fundamental de Galois'' son importantes para la demostración del teorema principal. La conclusión a la que se llegó fue que sí es posible probar la existencia de la extensión del cuerpo L/K tal que ...