Mostrando 1 - 2 Resultados de 2 Para Buscar 'Carrillo Flores, Wilber', tiempo de consulta: 0.06s Limitar resultados
1
artículo
This article aims to offer a unifying approach to the basic theory of division algebras by presenting the research of the German-American mathematician Max August Zorn, who classified alternative division algebras. In section 1 the basic theory of real division algebras is developed. Section 2 presents the Cayley-Dickson Process, which consists of constructing an extension algebra from an algebra provided with a conjugation, similar to the construction of complex numbers from real numbers. In Section 3 presents the classical division algebras R (real), C (complex), H (quaternions) and O (octonions) and mentions some of their applications. In section 4 the main theorem is presented, which establishes that the only (except isomorphism) alternative division algebras are: R, C, H and O (Zorn’s theorem). The classification theorems of associative division algebras (Frobenius) and normed ...
2
tesis de maestría
Describe estructuras geométricas sobre variedades Riemannianas mediante un enfoque unificado utilizando las álgebras de división normada A, producto vectorial cruz (PVC-R) y producto vectorial cruz complejo (PVC-C). Las álgebras de división normadas A, el producto vectorial cruz (PVC-R) y el producto vectorial cruz complejo (PVC-C), conducirá a la unificación para describir estructuras geométricas lo cual mejorará nuestra comprensión entre las siguientes geometrías: la geometría de Kähler, la geometría de Calabi-Yau, la geometría hiperk¨ ahler, la geometría de K¨ ahler-cuaterniónico, la geometría-Spin y la geometría-G2, lo cual permitirá descubrir enlaces ocultos entre estas geometrías y diferentes teorías físicas en las cuales se aplican, comprobando que la noción de variedad Riemanniana proporciona un marco adecuado para el estudio de estructuras geométricas.