Terahertz imaging and machine learning in the classification of coffee beans
Descripción del Articulo
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
| Autores: | , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad Privada del Norte |
| Repositorio: | UPN-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.upn.edu.pe:11537/27168 |
| Enlace del recurso: | https://hdl.handle.net/11537/27168 https://doi.org/10.1007/978-3-030-75680-2_94 |
| Nivel de acceso: | acceso abierto |
| Materia: | Inteligencia artificial Café Clasificación https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UUPN_b9d0751c765582b281c0061a97a7161f |
|---|---|
| oai_identifier_str |
oai:repositorio.upn.edu.pe:11537/27168 |
| network_acronym_str |
UUPN |
| network_name_str |
UPN-Institucional |
| repository_id_str |
1873 |
| dc.title.es_PE.fl_str_mv |
Terahertz imaging and machine learning in the classification of coffee beans |
| title |
Terahertz imaging and machine learning in the classification of coffee beans |
| spellingShingle |
Terahertz imaging and machine learning in the classification of coffee beans Uceda, Patricia Inteligencia artificial Café Clasificación https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Terahertz imaging and machine learning in the classification of coffee beans |
| title_full |
Terahertz imaging and machine learning in the classification of coffee beans |
| title_fullStr |
Terahertz imaging and machine learning in the classification of coffee beans |
| title_full_unstemmed |
Terahertz imaging and machine learning in the classification of coffee beans |
| title_sort |
Terahertz imaging and machine learning in the classification of coffee beans |
| author |
Uceda, Patricia |
| author_facet |
Uceda, Patricia Yoshida, Hideaki Castillo, Pedro |
| author_role |
author |
| author2 |
Yoshida, Hideaki Castillo, Pedro |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Uceda, Patricia Yoshida, Hideaki Castillo, Pedro |
| dc.subject.es_PE.fl_str_mv |
Inteligencia artificial Café Clasificación |
| topic |
Inteligencia artificial Café Clasificación https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2021-07-12T23:05:22Z |
| dc.date.available.none.fl_str_mv |
2021-07-12T23:05:22Z |
| dc.date.issued.fl_str_mv |
2021-06-15 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.citation.es_PE.fl_str_mv |
Uceda, P., Yoshida, H., & Castillo, P. (2021). Terahertz imaging and machine learning in the classification of coffee beans. Proceedings of the 6th Brazilian Technology Symposium. Smart Innovation, Systems and Technologies, 233, 854-861. https://doi.org/10.1007/978-3-030-75680-2_94 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11537/27168 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-75680-2_94 |
| identifier_str_mv |
Uceda, P., Yoshida, H., & Castillo, P. (2021). Terahertz imaging and machine learning in the classification of coffee beans. Proceedings of the 6th Brazilian Technology Symposium. Smart Innovation, Systems and Technologies, 233, 854-861. https://doi.org/10.1007/978-3-030-75680-2_94 |
| url |
https://hdl.handle.net/11537/27168 https://doi.org/10.1007/978-3-030-75680-2_94 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Springer |
| dc.publisher.country.es_PE.fl_str_mv |
CH |
| dc.source.es_PE.fl_str_mv |
Universidad Privada del Norte Repositorio Institucional - UPN |
| dc.source.none.fl_str_mv |
reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN |
| instname_str |
Universidad Privada del Norte |
| instacron_str |
UPN |
| institution |
UPN |
| reponame_str |
UPN-Institucional |
| collection |
UPN-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.upn.edu.pe/bitstream/11537/27168/1/license_rdf https://repositorio.upn.edu.pe/bitstream/11537/27168/2/license.txt |
| bitstream.checksum.fl_str_mv |
80294ba9ff4c5b4f07812ee200fbc42f 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional UPN |
| repository.mail.fl_str_mv |
jordan.rivero@upn.edu.pe |
| _version_ |
1752944161769652224 |
| spelling |
Uceda, PatriciaYoshida, HideakiCastillo, Pedro2021-07-12T23:05:22Z2021-07-12T23:05:22Z2021-06-15Uceda, P., Yoshida, H., & Castillo, P. (2021). Terahertz imaging and machine learning in the classification of coffee beans. Proceedings of the 6th Brazilian Technology Symposium. Smart Innovation, Systems and Technologies, 233, 854-861. https://doi.org/10.1007/978-3-030-75680-2_94https://hdl.handle.net/11537/27168https://doi.org/10.1007/978-3-030-75680-2_94El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.ABSTRACT The geographical origin of coffee beans represents an effect on the attributes and quality of the product due to the different soil and weather conditions for a specific location. Therefore, the development of methods for rapid classification and authentication of coffee beans based on their geographical origin is essential. This research was done with the purpose of determining the capacity of coffee (Coffea arabica) varieties classification with the use of Terahertz (THz) imaging and machine learning. THz images of coffee beans samples from 3 different geographical origins were acquired with a time-domain spectrometer and then used to measure the classification performance of methods such as neural networks, random forests, and support vector machines. The results obtained reached an accuracy up to 91.2%, which showed that the use of THz imaging and machine learning is an effective method for the non-destructive analysis of coffee variables and classification based on geographical origin.Trujillo San Isidroapplication/pdfengSpringerCHinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNInteligencia artificialCaféClasificaciónhttps://purl.org/pe-repo/ocde/ford#2.02.04Terahertz imaging and machine learning in the classification of coffee beansinfo:eu-repo/semantics/conferenceObjectCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/27168/1/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/27168/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5211537/27168oai:repositorio.upn.edu.pe:11537/271682021-07-12 18:05:27.511Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.924112 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).