Theory of nonlinear convolution with the Keller-Segel equation
Descripción del Articulo
        El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
            
    
                        | Autor: | |
|---|---|
| Formato: | tesis de grado | 
| Fecha de Publicación: | 2020 | 
| Institución: | Universidad Privada del Norte | 
| Repositorio: | UPN-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.upn.edu.pe:11537/28014 | 
| Enlace del recurso: | https://hdl.handle.net/11537/28014 https://doi.org/10.1109/CoNTESA50436.2020.9302853 | 
| Nivel de acceso: | acceso cerrado | 
| Materia: | Microorganismos Bacterias Modelos matemáticos Ecuaciones https://purl.org/pe-repo/ocde/ford#3.03.03 | 
| id | UUPN_87471eb2c5edf626567ac9129ee859d9 | 
|---|---|
| oai_identifier_str | oai:repositorio.upn.edu.pe:11537/28014 | 
| network_acronym_str | UUPN | 
| network_name_str | UPN-Institucional | 
| repository_id_str | 1873 | 
| dc.title.es_PE.fl_str_mv | Theory of nonlinear convolution with the Keller-Segel equation | 
| title | Theory of nonlinear convolution with the Keller-Segel equation | 
| spellingShingle | Theory of nonlinear convolution with the Keller-Segel equation Nieto Chaupis, Huber Amancio Microorganismos Bacterias Modelos matemáticos Ecuaciones https://purl.org/pe-repo/ocde/ford#3.03.03 | 
| title_short | Theory of nonlinear convolution with the Keller-Segel equation | 
| title_full | Theory of nonlinear convolution with the Keller-Segel equation | 
| title_fullStr | Theory of nonlinear convolution with the Keller-Segel equation | 
| title_full_unstemmed | Theory of nonlinear convolution with the Keller-Segel equation | 
| title_sort | Theory of nonlinear convolution with the Keller-Segel equation | 
| author | Nieto Chaupis, Huber Amancio | 
| author_facet | Nieto Chaupis, Huber Amancio | 
| author_role | author | 
| dc.contributor.author.fl_str_mv | Nieto Chaupis, Huber Amancio | 
| dc.subject.es_PE.fl_str_mv | Microorganismos Bacterias Modelos matemáticos Ecuaciones | 
| topic | Microorganismos Bacterias Modelos matemáticos Ecuaciones https://purl.org/pe-repo/ocde/ford#3.03.03 | 
| dc.subject.ocde.es_PE.fl_str_mv | https://purl.org/pe-repo/ocde/ford#3.03.03 | 
| description | El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado. | 
| publishDate | 2020 | 
| dc.date.accessioned.none.fl_str_mv | 2021-10-01T22:03:32Z | 
| dc.date.available.none.fl_str_mv | 2021-10-01T22:03:32Z | 
| dc.date.issued.fl_str_mv | 2020-12-30 | 
| dc.type.es_PE.fl_str_mv | info:eu-repo/semantics/bachelorThesis | 
| format | bachelorThesis | 
| dc.identifier.citation.es_PE.fl_str_mv | Nieto, H. A. (2020). Theory of nonlinear convolution with the Keller-Segel equation. International Conference on Computing, Networking, Telecommunications and Engineering Sciences Applications, CoNTESA 2020, 27-30. https://doi.org/10.1109/CoNTESA50436.2020.9302853 | 
| dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/11537/28014 | 
| dc.identifier.journal.es_PE.fl_str_mv | International Conference on Computing, Networking, Telecommunications and Engineering Sciences Applications, CoNTESA 2020 | 
| dc.identifier.doi.none.fl_str_mv | https://doi.org/10.1109/CoNTESA50436.2020.9302853 | 
| identifier_str_mv | Nieto, H. A. (2020). Theory of nonlinear convolution with the Keller-Segel equation. International Conference on Computing, Networking, Telecommunications and Engineering Sciences Applications, CoNTESA 2020, 27-30. https://doi.org/10.1109/CoNTESA50436.2020.9302853 International Conference on Computing, Networking, Telecommunications and Engineering Sciences Applications, CoNTESA 2020 | 
| url | https://hdl.handle.net/11537/28014 https://doi.org/10.1109/CoNTESA50436.2020.9302853 | 
| dc.language.iso.es_PE.fl_str_mv | eng | 
| language | eng | 
| dc.relation.ispartof.fl_str_mv | SUNEDU | 
| dc.rights.es_PE.fl_str_mv | info:eu-repo/semantics/closedAccess | 
| eu_rights_str_mv | closedAccess | 
| dc.format.es_PE.fl_str_mv | application/pdf | 
| dc.publisher.es_PE.fl_str_mv | IEEE | 
| dc.publisher.country.es_PE.fl_str_mv | AL | 
| dc.source.es_PE.fl_str_mv | Universidad Privada del Norte Repositorio Institucional - UPN | 
| dc.source.none.fl_str_mv | reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN | 
| instname_str | Universidad Privada del Norte | 
| instacron_str | UPN | 
| institution | UPN | 
| reponame_str | UPN-Institucional | 
| collection | UPN-Institucional | 
| bitstream.url.fl_str_mv | https://repositorio.upn.edu.pe/bitstream/11537/28014/1/license.txt | 
| bitstream.checksum.fl_str_mv | 8a4605be74aa9ea9d79846c1fba20a33 | 
| bitstream.checksumAlgorithm.fl_str_mv | MD5 | 
| repository.name.fl_str_mv | Repositorio Institucional UPN | 
| repository.mail.fl_str_mv | jordan.rivero@upn.edu.pe | 
| _version_ | 1752944172858343424 | 
| spelling | Nieto Chaupis, Huber Amancio2021-10-01T22:03:32Z2021-10-01T22:03:32Z2020-12-30Nieto, H. A. (2020). Theory of nonlinear convolution with the Keller-Segel equation. International Conference on Computing, Networking, Telecommunications and Engineering Sciences Applications, CoNTESA 2020, 27-30. https://doi.org/10.1109/CoNTESA50436.2020.9302853https://hdl.handle.net/11537/28014International Conference on Computing, Networking, Telecommunications and Engineering Sciences Applications, CoNTESA 2020https://doi.org/10.1109/CoNTESA50436.2020.9302853El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.ABSTRACT A theory of Keller-Segel equation by using nonlinear convolution is presented. Attention is paid to the case where bacteria contain ions in their composition so that one can derive electric relations in contrast to the Navier-Stokes coupled equations. The mathematical methodology presented in this paper is entirely based on integrals of convolution. In concrete the schemes of Wiener series and the Feynman propagator are used. Finally the resulting distributions of substrate and bacteria density would obey possible scenarios of electrical interactions because the ions in their compositions.Revisión por paresLos Olivosapplication/pdfengIEEEALinfo:eu-repo/semantics/closedAccessUniversidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNMicroorganismosBacteriasModelos matemáticosEcuacioneshttps://purl.org/pe-repo/ocde/ford#3.03.03Theory of nonlinear convolution with the Keller-Segel equationinfo:eu-repo/semantics/bachelorThesisSUNEDULICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/28014/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5111537/28014oai:repositorio.upn.edu.pe:11537/280142021-10-01 17:03:37.932Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= | 
| score | 13.932078 | 
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
 
   
   
             
            