Analysis of tourist systems predictive models applied to growing sun and beach tourist destination
Descripción del Articulo
ABSTRACT This study aims to present a new diagnosis model of Sun and beach destinations, we analyzed a set of explanatory theories about the tourism system, because current models do not reflect the real dynamics of an emerging tourist destination. We create a new predictive model so it served us to...
Autores: | , , , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2021 |
Institución: | Universidad Privada del Norte |
Repositorio: | UPN-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.upn.edu.pe:11537/28432 |
Enlace del recurso: | https://hdl.handle.net/11537/28432 https://doi.org/10.3390/su13020785 |
Nivel de acceso: | acceso abierto |
Materia: | Turismo Actividad turística Demanda turística Recursos naturales Pronóstico https://purl.org/pe-repo/ocde/ford#5.02.04 |
id |
UUPN_5fd9b7f98e47f9f5fca3cbd63b9daa38 |
---|---|
oai_identifier_str |
oai:repositorio.upn.edu.pe:11537/28432 |
network_acronym_str |
UUPN |
network_name_str |
UPN-Institucional |
repository_id_str |
1873 |
dc.title.es_PE.fl_str_mv |
Analysis of tourist systems predictive models applied to growing sun and beach tourist destination |
title |
Analysis of tourist systems predictive models applied to growing sun and beach tourist destination |
spellingShingle |
Analysis of tourist systems predictive models applied to growing sun and beach tourist destination Ruiz Palacios, Miguel Angel Turismo Actividad turística Demanda turística Recursos naturales Pronóstico https://purl.org/pe-repo/ocde/ford#5.02.04 |
title_short |
Analysis of tourist systems predictive models applied to growing sun and beach tourist destination |
title_full |
Analysis of tourist systems predictive models applied to growing sun and beach tourist destination |
title_fullStr |
Analysis of tourist systems predictive models applied to growing sun and beach tourist destination |
title_full_unstemmed |
Analysis of tourist systems predictive models applied to growing sun and beach tourist destination |
title_sort |
Analysis of tourist systems predictive models applied to growing sun and beach tourist destination |
author |
Ruiz Palacios, Miguel Angel |
author_facet |
Ruiz Palacios, Miguel Angel Pereira Teixeira de Oliveira, Cristiana Serrano González, José Saenz Flores, Soledad Gisela |
author_role |
author |
author2 |
Pereira Teixeira de Oliveira, Cristiana Serrano González, José Saenz Flores, Soledad Gisela |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Ruiz Palacios, Miguel Angel Pereira Teixeira de Oliveira, Cristiana Serrano González, José Saenz Flores, Soledad Gisela |
dc.subject.es_PE.fl_str_mv |
Turismo Actividad turística Demanda turística Recursos naturales Pronóstico |
topic |
Turismo Actividad turística Demanda turística Recursos naturales Pronóstico https://purl.org/pe-repo/ocde/ford#5.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.04 |
description |
ABSTRACT This study aims to present a new diagnosis model of Sun and beach destinations, we analyzed a set of explanatory theories about the tourism system, because current models do not reflect the real dynamics of an emerging tourist destination. We create a new predictive model so it served us to be used as a diagnostic method for the tourism system. Ancon district is a coastal town of Peru, it is the second-largest and oldest of Metropolitan Lima district. The study analyzed all tourist attractionsandlocalresourcesincludingreservedzoneLomasdeAncón,with10,962hectares. Itused a qualitative method and its design is grounded theory and phenomenological. The research covers theperiodfromMay2018toMarch2019,whereitwaspossibletoappreciatethehightouristdemand andwildfloraandfaunaoftheLomasdeAncóninitstwoseasons: winterseason(2018)andsummer 2019 (dry season). The study concludes that the new analysis model allows us identifying and understanding the dynamic and potential of sun and beach tourist destinations in the growth phase. The Ancón district has resources and attractions that would allow it to develop new tourist products and diversify the local tourist offer. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-16T21:58:52Z |
dc.date.available.none.fl_str_mv |
2021-11-16T21:58:52Z |
dc.date.issued.fl_str_mv |
2021-01-15 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.citation.es_PE.fl_str_mv |
Ruiz, M. A., ...[et al.]. (2021). Analysis of tourist systems predictive models applied to growing sun and beach tourist destination. Sustainability, 13 (2). https://doi.org/10.3390/su13020785 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11537/28432 |
dc.identifier.journal.es_PE.fl_str_mv |
Sustainability |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/su13020785 |
identifier_str_mv |
Ruiz, M. A., ...[et al.]. (2021). Analysis of tourist systems predictive models applied to growing sun and beach tourist destination. Sustainability, 13 (2). https://doi.org/10.3390/su13020785 Sustainability |
url |
https://hdl.handle.net/11537/28432 https://doi.org/10.3390/su13020785 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MDPI |
dc.publisher.country.es_PE.fl_str_mv |
CH |
dc.source.es_PE.fl_str_mv |
Universidad Privada del Norte Repositorio Institucional - UPN |
dc.source.none.fl_str_mv |
reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN |
instname_str |
Universidad Privada del Norte |
instacron_str |
UPN |
institution |
UPN |
reponame_str |
UPN-Institucional |
collection |
UPN-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.upn.edu.pe/bitstream/11537/28432/1/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf https://repositorio.upn.edu.pe/bitstream/11537/28432/2/license_rdf https://repositorio.upn.edu.pe/bitstream/11537/28432/3/license.txt https://repositorio.upn.edu.pe/bitstream/11537/28432/4/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf.txt https://repositorio.upn.edu.pe/bitstream/11537/28432/5/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf.jpg |
bitstream.checksum.fl_str_mv |
981967b1677c1855f8efef9406c1494b 80294ba9ff4c5b4f07812ee200fbc42f 8a4605be74aa9ea9d79846c1fba20a33 043be0411544f99b196d2c6b9766991f 75dc21c3a3744ef441b2a126e85389df |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UPN |
repository.mail.fl_str_mv |
jordan.rivero@upn.edu.pe |
_version_ |
1752944297723822080 |
spelling |
Ruiz Palacios, Miguel AngelPereira Teixeira de Oliveira, CristianaSerrano González, JoséSaenz Flores, Soledad Gisela2021-11-16T21:58:52Z2021-11-16T21:58:52Z2021-01-15Ruiz, M. A., ...[et al.]. (2021). Analysis of tourist systems predictive models applied to growing sun and beach tourist destination. Sustainability, 13 (2). https://doi.org/10.3390/su13020785https://hdl.handle.net/11537/28432Sustainabilityhttps://doi.org/10.3390/su13020785ABSTRACT This study aims to present a new diagnosis model of Sun and beach destinations, we analyzed a set of explanatory theories about the tourism system, because current models do not reflect the real dynamics of an emerging tourist destination. We create a new predictive model so it served us to be used as a diagnostic method for the tourism system. Ancon district is a coastal town of Peru, it is the second-largest and oldest of Metropolitan Lima district. The study analyzed all tourist attractionsandlocalresourcesincludingreservedzoneLomasdeAncón,with10,962hectares. Itused a qualitative method and its design is grounded theory and phenomenological. The research covers theperiodfromMay2018toMarch2019,whereitwaspossibletoappreciatethehightouristdemand andwildfloraandfaunaoftheLomasdeAncóninitstwoseasons: winterseason(2018)andsummer 2019 (dry season). The study concludes that the new analysis model allows us identifying and understanding the dynamic and potential of sun and beach tourist destinations in the growth phase. The Ancón district has resources and attractions that would allow it to develop new tourist products and diversify the local tourist offer.Revisión por paresLos Olivosapplication/pdfengMDPICHinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNTurismoActividad turísticaDemanda turísticaRecursos naturalesPronósticohttps://purl.org/pe-repo/ocde/ford#5.02.04Analysis of tourist systems predictive models applied to growing sun and beach tourist destinationinfo:eu-repo/semantics/bachelorThesisSUNEDUORIGINALAnalysis of Tourist Systems Predictive Models.pdfAnalysis of Tourist Systems Predictive Models.pdfapplication/pdf2205156https://repositorio.upn.edu.pe/bitstream/11537/28432/1/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf981967b1677c1855f8efef9406c1494bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/28432/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/28432/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTAnalysis of Tourist Systems Predictive Models.pdf.txtAnalysis of Tourist Systems Predictive Models.pdf.txtExtracted texttext/plain81504https://repositorio.upn.edu.pe/bitstream/11537/28432/4/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf.txt043be0411544f99b196d2c6b9766991fMD54THUMBNAILAnalysis of Tourist Systems Predictive Models.pdf.jpgAnalysis of Tourist Systems Predictive Models.pdf.jpgGenerated Thumbnailimage/jpeg4415https://repositorio.upn.edu.pe/bitstream/11537/28432/5/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf.jpg75dc21c3a3744ef441b2a126e85389dfMD5511537/28432oai:repositorio.upn.edu.pe:11537/284322021-11-16 22:06:51.871Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.958958 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).