Analysis of tourist systems predictive models applied to growing sun and beach tourist destination

Descripción del Articulo

ABSTRACT This study aims to present a new diagnosis model of Sun and beach destinations, we analyzed a set of explanatory theories about the tourism system, because current models do not reflect the real dynamics of an emerging tourist destination. We create a new predictive model so it served us to...

Descripción completa

Detalles Bibliográficos
Autores: Ruiz Palacios, Miguel Angel, Pereira Teixeira de Oliveira, Cristiana, Serrano González, José, Saenz Flores, Soledad Gisela
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/28432
Enlace del recurso:https://hdl.handle.net/11537/28432
https://doi.org/10.3390/su13020785
Nivel de acceso:acceso abierto
Materia:Turismo
Actividad turística
Demanda turística
Recursos naturales
Pronóstico
https://purl.org/pe-repo/ocde/ford#5.02.04
id UUPN_5fd9b7f98e47f9f5fca3cbd63b9daa38
oai_identifier_str oai:repositorio.upn.edu.pe:11537/28432
network_acronym_str UUPN
network_name_str UPN-Institucional
repository_id_str 1873
dc.title.es_PE.fl_str_mv Analysis of tourist systems predictive models applied to growing sun and beach tourist destination
title Analysis of tourist systems predictive models applied to growing sun and beach tourist destination
spellingShingle Analysis of tourist systems predictive models applied to growing sun and beach tourist destination
Ruiz Palacios, Miguel Angel
Turismo
Actividad turística
Demanda turística
Recursos naturales
Pronóstico
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short Analysis of tourist systems predictive models applied to growing sun and beach tourist destination
title_full Analysis of tourist systems predictive models applied to growing sun and beach tourist destination
title_fullStr Analysis of tourist systems predictive models applied to growing sun and beach tourist destination
title_full_unstemmed Analysis of tourist systems predictive models applied to growing sun and beach tourist destination
title_sort Analysis of tourist systems predictive models applied to growing sun and beach tourist destination
author Ruiz Palacios, Miguel Angel
author_facet Ruiz Palacios, Miguel Angel
Pereira Teixeira de Oliveira, Cristiana
Serrano González, José
Saenz Flores, Soledad Gisela
author_role author
author2 Pereira Teixeira de Oliveira, Cristiana
Serrano González, José
Saenz Flores, Soledad Gisela
author2_role author
author
author
dc.contributor.author.fl_str_mv Ruiz Palacios, Miguel Angel
Pereira Teixeira de Oliveira, Cristiana
Serrano González, José
Saenz Flores, Soledad Gisela
dc.subject.es_PE.fl_str_mv Turismo
Actividad turística
Demanda turística
Recursos naturales
Pronóstico
topic Turismo
Actividad turística
Demanda turística
Recursos naturales
Pronóstico
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description ABSTRACT This study aims to present a new diagnosis model of Sun and beach destinations, we analyzed a set of explanatory theories about the tourism system, because current models do not reflect the real dynamics of an emerging tourist destination. We create a new predictive model so it served us to be used as a diagnostic method for the tourism system. Ancon district is a coastal town of Peru, it is the second-largest and oldest of Metropolitan Lima district. The study analyzed all tourist attractionsandlocalresourcesincludingreservedzoneLomasdeAncón,with10,962hectares. Itused a qualitative method and its design is grounded theory and phenomenological. The research covers theperiodfromMay2018toMarch2019,whereitwaspossibletoappreciatethehightouristdemand andwildfloraandfaunaoftheLomasdeAncóninitstwoseasons: winterseason(2018)andsummer 2019 (dry season). The study concludes that the new analysis model allows us identifying and understanding the dynamic and potential of sun and beach tourist destinations in the growth phase. The Ancón district has resources and attractions that would allow it to develop new tourist products and diversify the local tourist offer.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-16T21:58:52Z
dc.date.available.none.fl_str_mv 2021-11-16T21:58:52Z
dc.date.issued.fl_str_mv 2021-01-15
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.citation.es_PE.fl_str_mv Ruiz, M. A., ...[et al.]. (2021). Analysis of tourist systems predictive models applied to growing sun and beach tourist destination. Sustainability, 13 (2). https://doi.org/10.3390/su13020785
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11537/28432
dc.identifier.journal.es_PE.fl_str_mv Sustainability
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/su13020785
identifier_str_mv Ruiz, M. A., ...[et al.]. (2021). Analysis of tourist systems predictive models applied to growing sun and beach tourist destination. Sustainability, 13 (2). https://doi.org/10.3390/su13020785
Sustainability
url https://hdl.handle.net/11537/28432
https://doi.org/10.3390/su13020785
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Universidad Privada del Norte
Repositorio Institucional - UPN
dc.source.none.fl_str_mv reponame:UPN-Institucional
instname:Universidad Privada del Norte
instacron:UPN
instname_str Universidad Privada del Norte
instacron_str UPN
institution UPN
reponame_str UPN-Institucional
collection UPN-Institucional
bitstream.url.fl_str_mv https://repositorio.upn.edu.pe/bitstream/11537/28432/1/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf
https://repositorio.upn.edu.pe/bitstream/11537/28432/2/license_rdf
https://repositorio.upn.edu.pe/bitstream/11537/28432/3/license.txt
https://repositorio.upn.edu.pe/bitstream/11537/28432/4/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf.txt
https://repositorio.upn.edu.pe/bitstream/11537/28432/5/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf.jpg
bitstream.checksum.fl_str_mv 981967b1677c1855f8efef9406c1494b
80294ba9ff4c5b4f07812ee200fbc42f
8a4605be74aa9ea9d79846c1fba20a33
043be0411544f99b196d2c6b9766991f
75dc21c3a3744ef441b2a126e85389df
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UPN
repository.mail.fl_str_mv jordan.rivero@upn.edu.pe
_version_ 1752944297723822080
spelling Ruiz Palacios, Miguel AngelPereira Teixeira de Oliveira, CristianaSerrano González, JoséSaenz Flores, Soledad Gisela2021-11-16T21:58:52Z2021-11-16T21:58:52Z2021-01-15Ruiz, M. A., ...[et al.]. (2021). Analysis of tourist systems predictive models applied to growing sun and beach tourist destination. Sustainability, 13 (2). https://doi.org/10.3390/su13020785https://hdl.handle.net/11537/28432Sustainabilityhttps://doi.org/10.3390/su13020785ABSTRACT This study aims to present a new diagnosis model of Sun and beach destinations, we analyzed a set of explanatory theories about the tourism system, because current models do not reflect the real dynamics of an emerging tourist destination. We create a new predictive model so it served us to be used as a diagnostic method for the tourism system. Ancon district is a coastal town of Peru, it is the second-largest and oldest of Metropolitan Lima district. The study analyzed all tourist attractionsandlocalresourcesincludingreservedzoneLomasdeAncón,with10,962hectares. Itused a qualitative method and its design is grounded theory and phenomenological. The research covers theperiodfromMay2018toMarch2019,whereitwaspossibletoappreciatethehightouristdemand andwildfloraandfaunaoftheLomasdeAncóninitstwoseasons: winterseason(2018)andsummer 2019 (dry season). The study concludes that the new analysis model allows us identifying and understanding the dynamic and potential of sun and beach tourist destinations in the growth phase. The Ancón district has resources and attractions that would allow it to develop new tourist products and diversify the local tourist offer.Revisión por paresLos Olivosapplication/pdfengMDPICHinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNTurismoActividad turísticaDemanda turísticaRecursos naturalesPronósticohttps://purl.org/pe-repo/ocde/ford#5.02.04Analysis of tourist systems predictive models applied to growing sun and beach tourist destinationinfo:eu-repo/semantics/bachelorThesisSUNEDUORIGINALAnalysis of Tourist Systems Predictive Models.pdfAnalysis of Tourist Systems Predictive Models.pdfapplication/pdf2205156https://repositorio.upn.edu.pe/bitstream/11537/28432/1/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf981967b1677c1855f8efef9406c1494bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/28432/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/28432/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTAnalysis of Tourist Systems Predictive Models.pdf.txtAnalysis of Tourist Systems Predictive Models.pdf.txtExtracted texttext/plain81504https://repositorio.upn.edu.pe/bitstream/11537/28432/4/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf.txt043be0411544f99b196d2c6b9766991fMD54THUMBNAILAnalysis of Tourist Systems Predictive Models.pdf.jpgAnalysis of Tourist Systems Predictive Models.pdf.jpgGenerated Thumbnailimage/jpeg4415https://repositorio.upn.edu.pe/bitstream/11537/28432/5/Analysis%20of%20Tourist%20Systems%20Predictive%20Models.pdf.jpg75dc21c3a3744ef441b2a126e85389dfMD5511537/28432oai:repositorio.upn.edu.pe:11537/284322021-11-16 22:06:51.871Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.958958
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).