Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads

Descripción del Articulo

Insufficient data availability and suboptimal monitoring systems notably reduced the lifespan of flexible pavements. This study addressed these challenges by introducing an innovative tool to enhance control over pavement conditions. Initial field observations identified various types of cracking, f...

Descripción completa

Detalles Bibliográficos
Autores: Neyra, Luis Antonio Elespuru, Tolentino, Marco Antonio Llacza, Lizano, Aldo Rafael Bravo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676023
Enlace del recurso:http://hdl.handle.net/10757/676023
Nivel de acceso:acceso embargado
Materia:Asphalt pavement
Crack detection
Crack map
Deep Learning
Monitoring
Descripción
Sumario:Insufficient data availability and suboptimal monitoring systems notably reduced the lifespan of flexible pavements. This study addressed these challenges by introducing an innovative tool to enhance control over pavement conditions. Initial field observations identified various types of cracking, forming the basis for a comprehensive photogrammetric data survey. This dataset was then employed to train a Deep Learning model for object detection. The results showcased the model’s exceptional reliability in identifying pavement cracks, achieving an impressive accuracy rate of 83.33%. The study emphasizes the practical viability of the proposed tool as an effective means of monitoring roadway conditions. By overcoming data limitations and monitoring deficiencies, this research not only contributes to the progression of pavement maintenance practices but also establishes a solid foundation for creating a maintenance and repair priority map. This serves as a valuable tool for targeting interventions, enhancing the longevity and overall performance of flexible pavements, and represents a significant advancement in sustainable infrastructure management.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).